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Introduction and Overview

Many modern distributed services, network protocols and applications are deployed over insecure and
unreliable public networks, such as the global Internet. Communication security is based upon availability
of timely, efficient and effective security services. Some of the most formidable security challenges are
represented by the high cost of security and by the insufficiently controlled access to security services. To
this end, this project proposed two new directions in information security. The first applied to dynamic
networks where security capabilities of end-users must be tightly controlled. The second applied to
networks containing low-powered devices such as PDAs and smartcards. Our approach uses partially
trusted security mediators and is well suited for both military and civilian applications. Following are the
highlights of the work:

Tightly Controlled Security Services. Many situations call for a security officer to quickly revoke,
reinstate or alter an end-user’s ability to take part in critical security tasks. We say that a capability is
tightly controlled if it can be quickly revoked at will. Our architecture provides tight control over the
following end-user capabilities: (1) generation of digital signatures, (2) decryption of messages, and
(3) authentication to others. We achieve this without relying on Certificate Revocation Lists (CRLS)
and other off-line means. Instant, fine-grained control of security services is particularly useful in
battle-field scenarios. (For example, all security capabilities of captured equipment or personnel must
be immediately disabled.) It is also well-suited to civilian applications where activities—such as
signing contracts and decrypting sensitive data—must be both revocable and tightly controlled.

We obtain tight control over security capabilities by requiring each end-user to interact with an
untrusted SEcurity Mediator (SEM). An end-user cannot generate a valid signature or decrypt a
message without the SEM’s help. To revoke an end-user’s security capability, the security officer
simply instructs the SEM to refuse any interaction with the said end-user thereby attaining instant
revocation. The mediator is carefully designed to minimize both interaction and computation so as to
increase robustness and availability. In the same vein, SEM is physically distributed to facilitate
scalability, fault tolerance and minimize risks from denial-of-service attacks.

Networks of Weak Devices. In networks containing low-powered devices (e.g., PDA-s) security
operations often represent a performance bottleneck. As an outgrowth of the above, we offload heavy
security computations to an untrusted SEM. We aim to do so without compromising end-device’s
secrets and by taking advantage of the superior computing power of SEM.

0 Aided key generation. Generating cryptographic keys on weak devices such as PDAs and
cell-phones takes on the order of many minutes: both the delay and power consumption are of
concern. We developed techniques that enable a weak device to offload much of the key
generation work to an un-trusted SEM. This way, key generation delay is reduced to a few
seconds. At the end of the computation, the SEM has no information about the secret key it
helped generate. This kind of aided key generation can be used by smartcards as well as other
embedded devices.

0 Aided signature computation. Similar to the above, we investigated and developed methods
for offloading costly components of public key signature generation to untrusted mediators.
We considered several methods for doing so. The end-device needs to compute only a few
hashes per signature while retaining full benefits of public key-based signatures.

0 We demonstrated the effectiveness of our approach by implementing all new techniques as a
library of mediated cryptographic services. The library implements both tight control
mechanisms and off-loading of security computations. The usage of wrappers enabled easy
integration of our code into existing projects/products. This work resulted in numerous
insights into the delicate and difficult integration of cryptographic protocols with practical
communication systems.

Identity Based Encryption. The complexity of managing public-key certificates motivated Adi Shamir
to propose the idea of Identity Based Encryption (IBE) back in 1984. Unfortunately no usable
implementations of IBE were known. During the course of this project, and motivated by the



complexity of revoking certificates, we discovered a very practical IBE system. An IBE system is a public-
key encryption mechanism where public keys can be arbitrary strings, such as email addresses, phone
numbers, or dates. At a high level, IBE essentially eliminates the need for certificates since a person’s
public-key is just that person’s public identity. During the course of the project we successfully
demonstrated that IBE leads to simple public-key management. We implemented an IBE library and
integrated IBE with several mail readers. In 2002 several of our students launched a start-up company,
Voltage Security, to commercialize IBE. The company participated in this year’s JWID and the resulting
reviews are very favorable.

Project Accomplishments: Year 1

As the initial step in the project, an extensive literature review has been undertaken in order to locate any
current or past research efforts with goals similar to those of SUCSES. A number of activities were
identified.

The project Web page was designed and advertised in several security-related conferences and Internet
newsgroups. It includes, among other things, project goals, problem statement, quad charts as well as other
documents and publications.

Starting in mid-August we began working on the initial architecture of the SUCSES toolkit. Basic layering
design has been done; however, a low-level modular arithmetic package has not been selected yet. Since
there were a number of public domain software packages, selecting the optimal one required some
experimentation with all.

The SAS component of SUCSES has undergone several revisions. The most recent version has the
following features:

e  Support for X.509 certificates

e  Seamless migration of SEMs

e Fully-configurable interface and system parameters

e  MOTIF-based user interface

e Signed error messages from SEM

e Platform independence (SUNos, SOLARIS and LINUX)

e Documented API

The following activities were started during the first year of the project and completed in later years:
e  SAS plug-in for Netscape Communicator

o Measurements for SAS versus plain-RSA overhead

e Integration (unification) with Stanford's communication platform

One of our main goals was to off-load expensive part of generating RSA keys on a handheld device such as
the PalmPilot. Our prototype showed how to speed up RSA key generation by a factor of six without
compromising the security of the generated key. We obtained this speedup by offloading most of the key
generation work onto an untrusted server. The server did most of the work, but learned nothing about the
key it helped generate.

During the past year we extended our RSA server aided architecture to also support RSA signature
generation. The resulting prototype can be used for both RSA key generation and RSA signature
generation. We use the PalmPilot as an example handheld device. We chose the PalmPilot since it is easy
to program and to experiment with.

When using 1024 bit RSA keys our new prototype implementation shows that RSA signature generation
can be sped up by a factor of 2.5. We used a 500 MHz Pentium 11l as the server. The implemented



protocol is based on new practical techniques for generating RSA signatures with the help of an untrusted
server. Both results on RSA key generation and RSA signatures were reported in the technical literature.

Our primary research result this year is the novel scheme for mediated (SEM-assisted) RSA signatures and
RSA decryption. Mediated RSA (MRSA) is different from SAS in that the actual MRSA signature is
indistinguishable from a plain RSA signature. The approach can be roughly outlined as follows:

Setup:

1. CA generates a number of half-RSA keys, one for each SEM.

2. CA assigns to each client (user) is assigned a half-RSA key as well.
Signature:

1.  When client requests an RSA signature, he sends the text to SEM

2. Ifclient is not revoked, SEM computes a half-signature with its key and returns the result

3. Client proceeds to use his half-key to obtain an actual RSA signature (which he also verifies!)
Mediated decryption works in a similar manner.

The interesting security properties are: 1) no communication between CA and SEM; 2) Computational
overhead only double of plain RSA; 3) Verification unchanged from plain RSA; 4) No certificates for
SEMs (we use id-based assignment of half-keys; see below); 5) No per-user state on the SEM; 6) SEM
knows no user secrets, cannot impersonate users;

The initial (proof-of-concept) implementation of MRSA is taking place over the summer. We conducted
extensive measurements of its effectiveness and costs.

One important goal of the SUCSES project is to show how a SEcurity Mediator (SEM) can be used for key
management and key revocation. During this first year we added another feature to the SEM design:
identity-based encryption.

Identity-based encryption considerably simplifies certificate management. Currently, when Alice wants to
send a message to Bob she must first obtain Bob's public key certificate. When using identity-based
encryption, Bob's public key is simply Bob's Email address. Hence, Alice need not obtain Bob's certificate.
She simply encrypts using Bob's Email address as a public key. Bob obtains the private key corresponding
to his Email address from the CA. Unfortunately, there are yet no usable public key systems that support
identity-based encryption. However, as is turns out, RSA can be easily converted into an identity-based
system by using an untrusted SEM. All encrypted Email flows through the SEM. The SEM gains no
information about the contents of the encrypted Email it is handling. As encrypted Email flows through the
SEM, the SEM applies a certain simple operation to the Email header. The recipient then decrypts the
message using his private key.

Project Accomplishments: Year 2

We briefly recall the objective of the SUCSES project: to develop novel technologies for survivable
security services. The main goal is to provide organizations (military and civilian) with tight control—as
opposed to today’s certificate-based loose control—over end-users’ security privileges such as digital
signatures and data encryption/decryption. At the same time, SUCSES aims to greatly simplify public key
certificate management by developing novel techniques that do not require the use of certificates. An
additional goal is to assist weak computing devices (e.g., PDASs) by providing them with the same full
security functionality (digital signatures, public key encryption, key generation) that is available for more
powerful devices while retaining the ability to instantly revoke a device’s access to security services.

The centerpiece of the SUCSES project is a component called Security Mediator (SEM). SEM is an on-line
entity charged with assisting end-users (and end-devices) in obtaining security services. By mediating
access to critical security services, a SEM acts both as a helper and an on-line revocation authority. Also, in
the process of assisting end-users (specifically weak devices) SEM off-loads from them some of the



computational and storage burden involved in costly cryptographic operations. At the same time, an SEM is
not entrusted with end-users’ secrets and cannot impersonate and/or cheat constituent end-users without
detection.

Using SEM-based mediation requires careful division of labor between the traditional role of an off-line
Certification Authority (CA) and the on-line SEMs. Interactions between SEMs and end-users are kept to a
minimum so as to make the SEM as unobtrusive as possible. Protocols between SEM and end-user are
designed to be both provably secure and fault-tolerant.

Generating strong cryptographic keys on small devices such as a PalmPilot takes considerable time (tens
of minutes). SUCSES is developing techniques to enable such devices to offload much of the public key
generation work to an untrusted SEM. However, at the end of the computation, SEM has no information
about the secret key it helped to generate. This way, key generation delay can be reduced to a few seconds.
Aided key generation of this type can be used by smartcards as well as other embedded devices. In the
same vein, investigation and development of methods for offloading costly components of public key
signature generation to untrusted mediators will be undertaken. Several methods will be considered.
Ideally, the end-device will need to compute only a few inexpensive hashes per signature while retaining
full benefits of public key-based signatures.

ACCOMPLISHMENTS:

Most public key methods are based on a binding between users and their respective keys. Such bindings
are usually expressed in certificates; this requires complex means of issuance, distribution and revocation.
In contrast, identity-based encryption considerably simplifies certificate management. Currently, when
Alice wants to send a message to Bob she must first obtain Bob’s public key certificate. With identity-
based encryption, Bob’s public key is simply Bob’s Email address. Hence, Alice need not obtain Bob’s
certificate. She simply encrypts using Bob’s Email address as a public key. Bob obtains the private key
corresponding to his Email address from the CA.

During the past year a new identity-based encryption scheme (IBE) has been developed. It is based on the
concept of “Weil Pairing” on elliptic curves. Unlike SAS and mRSA, IBE requires no on-line interaction.
IBE greatly simplifies public key certificate management since, in it, a user’s public key can be derived
from a unique identifier, such as an email address. IBE is not only a practical scheme, it also addresses
what has been, for a long time, an important open problem in cryptography. IBE can also be used in order
to perform secure delegation of cryptographic keys to untrusted or partially trusted devices.

The SAS, mRSA and IBE components of SUCSES have been fully implemented as public domain
libraries and email plug-ins. The following software has been developed in the past year (all components
are available for download from the SUCSES web page):

MRSA and SAS client libraries

IBE libraries

IBE plug-in for Eudora

SAS signature verification program for Netscape and Outlook

SAS plug-in for Eudora

e mRSA plug-in for Eudora (Netscape and Outlook require no changes to verify mRSA signatures)
e  Stand-alone Unix-based SEM daemon supporting both SAS and mRSA

e A collection of CA utilities for certificate management

Extensive performance tests of the software have been undertaken. The results clearly indicate that, for
small devices, SAS performs significantly better than plain RSA when a SEM is located on the same LAN
or campus network. (The performance of SAS degrades as the client-SEM distance grows.) mRSA tests
demonstrate performance that is, on the average, 3-4 times worse than plain RSA. However, for interactive
applications (such as email), the slowdown is not noticeable.

Experiments using an unoptimized version of the IBE system shows that encryption/decryption take about
0.3 seconds on an 800 MHz PI1Il. Hence, even an unoptimized version of the system is quite practical. We
are currently optimizing the IBE library and hope to reduce the time for encryption/decryption to under 0.1



seconds. Other projects are welcome to use the implementation of the IBE system. The IBE library is open
source.

Planned Technology Transition

Technical transfer discussions with Rainbow Technologies, ENTRUST, Microsoft and Verisign were held
throughout the past year. Some of these contacts are still on-going, while others (Entrust and Rainbow)
terminated because of the worsened economy in early 2001. Both Verisign and Microsoft were happy to
learn about the capabilities of mRSA and its application to code signing. Last year, Verisign made a costly
blunder when it issued a Microsoft code signing certificate to an unknown person. This mishap clearly
illustrated the difficulty of revocation with current methods. As a result, both Verisign and Microsoft are
interested in fast revocation technologies for code signing certificates. MRSA provides easy revocation
compatible with today’s deployed software.

The intent is to deploy both IBE and mRSA/SAS on the global Internet. To this end, a “secure” web site is
being built to store the IBE root keys. Initially, this site will be hosted in a physically secured location at
Stanford campus. As mentioned above, full deployment is expected to take place before the end of the year

Project Accomplishments: Year 3

We developed an open-source library implementing the new ldentity Based Encryption scheme (IBE).
Most of the effort went into optimizing the library for performance. Encryption and decryption now take
40ms on a 1GhZ Pentium IIl. The library is open source and is available for download at
http://crypto.stanford.edu/ibe

We also prototyped an identity-based email system. This is part of a larger project for building an identity-
based PKI. The email system supports Outlook, Eudora, Hotmail, and Yahoo mail. The system was
deployed in year 3 and currently has approximately 200 regular users world wide.

The same crypto technology that made the new IBE system possible can also be used to provide very short
digital signatures. These signatures are half the size of DSS signatures and provide the same level of
security. Our short signature scheme has been implemented and is available for download along with the
library implementing IBE. An interesting property of the signature scheme is that its performance is the
reverse of the performance of RSA signatures: signature generation is fast where as signature verification is
slow (signature generation is three times faster than RSA signature generation and the signature is about
one tenth the size) Hence, this signature scheme is better suited than RSA for handheld devices that
generate signatures.

An ID-based variant of mRSA (IB-mRSA) has been designed and implemented. IB-mRSA is a simple and
practical identity-based signature and encryption method. Its main difference from mRSA is the use of
identities in computing users’ public keys. It is fully compatible with mRSA and plain RSA. Its
performance (for data encryption and verification of signatures) is only slightly lower than that of mRSA. It
offers a realistic transition scenario for gradual introduction of public key cryptography. Moreover, it
combines the reduced reliance on certificates (common to all ID-based schemes) with the fine-grained
revocation intrinsic to mRSA.

A forward-secure variant of mRSA (FS-mRSA) has also been designed and implemented. FS-mRSA
provides extra security over mRSA by periodically evolving the user’s private key. Consequently, even if
the adversary compromises the user’s secrets, he is unable to forge user’s signatures rooted in the past.
Furthermore, FS-mRSA supports the notion of “expiring encryption” whereby data encrypted for the user
can be made valid up to a certain time. Thereafter, even the legitimate user cannot decrypt the data. Also,
the adversary who eavesdrops on encrypted data and later compromises the user’s secrets is unable to
decrypt pre-recorded data. Finally, the added forward security feature in FS-mRSA does not degrade the
performance (i.e., it is as efficient as normal mRSA).


http://crypto.stanford.edu/ibe

The currently available software includes the following components (note that all components are available
for download from the SUCSES web page):

e mRSA, SAS, FS-mRSA and IB-mRSA client libraries

e  Microsoft Outlook and Eudora plug-ins for mRSA, FS-mRSA and IB-mRSA signatures

o Decryption helpers for mRSA, FS-mRSA and IB-mRSA encrypted messages (work withe MS
Outlook, Eudora and Netscape Messenger)

A stand-alone email proxy (instead of plug-ins) supporting SAS and mRSA signatures
Stand-alone Unix-based SEM daemon supporting both SAS and mRSA

A collection of CA utilities for certificate management

Optimized IBE crypto library including support for short signatures

Microsoft Outlook, Hotmail, Yahoo mail, Eudora, and Pine plug-ins for the IBE email system
Key generation and user management system to be used with the IBE mail plug-ins

Technical contacts are still being maintained with Microsoft and Verisign regarding possible technology
transfer venues.

Project Accomplishments: Year 4

One of the main research contributions of SUCSES has been the invention of a practical identity-based
public key cryptosystem (IBE). IBE allows us, among other things, to build an Email system where a party
A can send secure Email to party B, even if the latter has no public key yet. The IBE system is
implemented and accessible via an easy-to-use plug-in for common mail readers such as Outlook and pine.
The resulting system makes it very simple for people to communicate securely via email. A technical paper
describing the identity-based encryption system (based on Weil Pairing) was presented in Crypto 2001.

The IBE implementation is now fully optimized: it takes about 30ms for encryption & decryption on a 1-
GHz Pentium. Hence the system is fast enough to replace RSA in commercial applications. The
implementation is open source and is available on the project’s web site.

We completed a mail gateway for Windows for performing IBE e-mail encryption on the fly. The mail
gateway enables us to encrypt/decrypt any e-mail sent from any Windows mail reader. The resulting
system is a brand new approach for dealing with secure e-mail. We are hoping it will spread through the
population in a viral-like effect (Alice sends secure mail to Bob causing Bob to send secure mail to Carol
and so on).

We also deployed IBE email for world-wide use using Internet Explorer plug-ins for hotmail and Yahoo!
mail. The Private Key Generator (PKG) is running at Stanford. We are currently tracking the adoption
rate.

IBE-Related Results

The techniques we used to construct our IBE cryptosystem can be used to solve many open problems in
cryptography. We give three examples that we believe are the most exciting (the second application is new
for this reporting period).

Short digital signatures. Using the principles underlying our IBE system (the Weil pairing) we were able
to construct a signature scheme where the signatures are very short.  Signatures in our scheme provide the
same security as DSS signatures, but are half the size. Such short signatures are important for bandwidth
constrained applications and especially applications where a human is asked to type in a digital signature.
This often comes up in software product activation mechanisms where a user types in a digital signature to
unlock the software product.

Aggregate signatures. Surprisingly, the short signature scheme described above has some unexpected
properties — it supports signature aggregation. Signature aggregation enables anyone to compress a list of
signatures on different messages generate by many users into a single signature. This is useful, for
example, for shortening certificate chains. Recall that a certificate chain of depth n contains n signatures



issued by each of the n Certificate Authorities. Aggregate signatures enable all these signatures to be
aggregated into a single signature, thus shortening the certificate chain. Aggregate signature can also be
used to reduce the bandwidth in secure routing protocols such as SBGP.

Public key searching on encrypted data. Suppose Alice sends Bob an encrypted email containing the
keyword “Urgent”. Bob would like his mail gateway to forward such email to Bob’s pager. Unfortunately,
with encrypted email the gateway cannot tell that the email contains the word “Urgent”. Using our IBE
mechanism we are able to build an email system in which Bob can give the mail gateway a key that enables
the gateway to test whether the email contains the “Urgent” keyword, but the gateway learns nothing else
about the email. An observer, who does not have the key, learns absolutely nothing about the email
contents (other than the length of the email).

Other Accomplishments

In prior reports, we have described the SAS, mMRSA and ID-mRSA components of the SUCSES project.
We have completed the implementation (client libraries, SEM support, CA utilities and Eudora/Outlook
plug-ins) of SAS, mRSA and ID-mRSA functions. During this reporting period, our development efforts
concentrated mainly on developing installation packages and documentation for both MS Outlook™ and
Eudora™ plug-ins.

The work on mediated Diffie-Hellman key exchange (mDH) is still in progress. Subsequent plans include
integration of mDH with the popular Kerberos Authentication Service. In addition, we are working on a
version of mRSA that supports so-called blind signatures. Such signatures are useful in environments
where the SEM must be prevented from identifying particular messages signed on behalf of a client. Note
that this does not contradict the revocation functionality of a SEM: a SEM can identify the requesting client
and perform a real-time revocation check. However, a SEM is unable to (later) associate a signature with a
particular signature request.

We have begun limited experimentation on the UCI campus with the above software components. Practical
experience gained from using our implementation will be valuable in identifying usability issues and
comparing our revocation approach with the traditional CRL-based techniques.

Technology Transfer

Voltage Security, a 2-year old start-up, is commercializing the IBE system developed in the course of the
project. The company participated in this year’s JWID and received very favorable reviews. The Voltage
product provides backend identity management and frontend encrypted email and encrypted files. There is
also an available IBE toolkit that companies can use to incorporate IBE into their products. Recently,
GemPlus released an implementation of our IBE system on a GemPlus smartcard. The combined
SAS/mRSA/IB-mRSA is being phased in for use at UCI ICS Department.

Conclusion

The SUCSES project has made fundamental contributions to the science and engineering of secure
communications in a packet-switched network such as the Internet. Three broad areas of research were
addressed in the project: control of security services, security in networks of low-performance devices, and
identity-based encryption.

The project developed strong theoretical and practical results in the fine-grain control of security services,
especially in group signatures and immediate revocation. The work resulted in a comprehensive study of
how to implement safe, fast revocation of certificates and security capabilities on large networks. The
architecture developed and demonstrated relies on the SEM security mediator, a distributed and highly
scalable approach to tight security control. It has been shown to be resilient and highly robust against
distributed denial-of-service attacks.

The project was one of the first to recognize the need for fresh approaches to enabling security in networks
of marginally capable devices, such as cell phones and personal digital assistants. The problems of
efficiently generating RSA keys on low-power handheld devices were highlighted and innovatively solved



in the project. This subfield has gone on to become a very active area of research in security. Of particular
interest is the technique aiding weaker devices by allowing a more-powerful server to assist in the
processing of information used in key generation and signature computation.

Finally, the pioneering work in identity-based encryption, where public keys can take on human-friendly
formats (e.g. string names) rather than machine-oriented formats (e.g. abstract numbers). Building on
suggestions made two decades ago but never pursued, the project developed, validated, and demonstrated
actual IBE concepts that were incorporated in a prototype and picked up for commercialization by Voltage
Security, Inc. The IBE system is operational in several installations, providing effective, easy-to-use
public-key services to a growing community of users.

The SUCSES project has cut a wide swath during its period of performance, producing significant findings
of broad applicability in privacy and security of networked and distributed systems. The results have
seeded research in other related areas and have been adopted by the market for real products.

Project Personnel

Name Title Period of performance
Gene Tsudik Project Leader ISI & UCI throughout
Joseph Bannister Project Leader USC/ISI Sept 01 -- Sept 03
Dan Boneh Project Leader Stanford throughout
Xuhua Ding Graduate Researcher Sept 99 -- Sept 03
Paolo Montini Visiting Student Jan 00 -- July 00
Kemal Bicakci Graduate Researcher Sept 99 -- July 00
Ben Lynn Graduate Researcher Sept 00 -- Sept 03
Hovav Shacham Graduate Researcher Sept 00 -- Sept 03

Table 1: Project Personnel

Publications
Following are all project-related publications that appeared at refereed conferences/workshops and
archival-quality journals:

1. Leak-free Group Signatures with Immediate Revocation, X. Ding and G. Tsudik and S. Xu, 24th
International Conference on Distributed Computing Systems (ICDCS'04), 2004

2. Fine-grained Control of Security Capabilities, D. Boneh and X. Ding and G. Tsudik , ACM
Transactions on Internet Technology, 2004

3. Simple Identity-Based Encryption with Mediated RSA, X. Ding and G. Tsudik, RSA Conference,
Cryptographer's Track, 2003

4. Identity-based Mediated RSA, D. Boneh, X. Ding, G. Tsudik, International Workshop on
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Security Applications (WISA'01), Seoul (Korea), September 2001

Invited Talk: Survivable Security, Joint US/EU Information Survivability Workshop, Malvern,
UK, June 2000
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Awards

e At the DC PI meeting held in San Antonio in January 2002, the PIs Dan Boneh and Gene Tsudik
were recognized for their research in the context of the SUCSES project with DARPA Dynamic
Coalitions Program Award for Excellence in Academic Research.

e Dan Boneh and Matt Franklin received the InfoWorld Innovators award on May 24th, 2004 for
the development of the Boneh-Franklin IBE system.

Software

The software developed in the course of the SUCSES project is (and always has been) publicly available
from the SUCSES web site: http://sconce.ics.uci.edu/sucses as well as from the companion site at Stanford:
http://crtypto.stanford.edu.

Deployment and Technology Transfer

Voltage Security, a 2-year old start-up, is commercializing the IBE system developed in the course of the
project. The company participated in this year’s JWID and received very favorable reviews. The Voltage
product provides backend identity management and frontend encrypted email and encrypted files. There is
also an available IBE toolkit that companies can use to incorporate IBE into their products. Recently,
GemPlus released an implementation of our IBE system on a GemPlus smartcard

The SEM toolkit is (or has been) in use at NAI Labs, UC Irvine, Dartmouth, UIUC, SRI, USC/ISI and
Stanford.
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Abstract

Group signatures are an interesting and appealing cryp-
tographic construct with many promising potential applica-
tions. This work is motivated by attractive features of group
signatures, particularly, their potential to serve as founda-
tion for anonymous credential systems. We re-examine the
entire notion of group signatures from a systems perspective
and identify two new security requirements: leak-freedom
and immediate-revocation, which are crucial for a large
class of applications. We then present a new group sig-
nature scheme that achieves all identified properties. Our
scheme is based on the so-called systems architecture ap-
proach. It is more efficient than the state-of-the-art and fa-
cilitates easy implementation. Moreover; it reflects the well-
known separation-of-duty principle. Another benefit of our
scheme is the obviated reliance on underlying anonymous
communication channels, which are necessary in previous
schemes.

1. Introduction

The concept of group signatures was introduced by
Chaum and van Heyst [18] in 1991. The chief motiva-
tion was to facilitate anonymous group-oriented appli-
cations. Given a valid group signature, any verifier can
determine the signer’s group membership, while only a des-
ignated entity (called a group manager) can identify the ac-
tual signer. In recent years, many research efforts sought
efficient constructs and precise definitions of group sig-
natures. Early schemes (e.g., [19]) suffered from lin-

*  Work done at the University of California, Irvine.
t  Work done, in part, at the University of California, Irvine.

ear complexities of either (or both) group public key size
or signature size with respect to the number of group mem-
bers. These drawbacks were first addressed by Camenisch
and Stadler [13]. Follow-on results [12, 1] gradually im-
prove on efficiency. Despite these advances, membership
revocation remained a difficult obstacle [7, 33, 2]. Signif-
icant progress was made by Camenisch and Lysianskaya
[9] who utilized a novel dynamic accumulator to con-
struct a group signature scheme with reasonably efficient
revocation. Further improvements have been made re-
cently by Tsudik and Xu [34].

In the past, group signature schemes aimed to sat-
isfy a jumble of (often redundant and overlapping) security
requirements: unforgeability, exculpability, traceabil-
ity, coalition-resistance, no-framing, anonymity, and
unlinkability [13, 8, 12, 29, 3, 9]. To untangle and sim-
plify these messy requirements, Bellare et al. [4] investi-
gated “minimal” security requirements for group signature
schemes. This line of research is very important, as it par-
allels the pursuit of similar requirements for secure pub-
lic key encryption schemes [26, 31, 32, 22] and secure key
exchange protocols. The work in [4] showed that two se-
curity properties: full-traceability and full-anonymity are
sufficient to subsume all aforementioned (seven) require-
ments.

In this paper, we argue that full-traceability and
full-anonymity are insufficient for certain realistic group
signature settings. This claim is based on the observa-
tion that group signatures are inherently application-
oriented, and, thus, cannot simply be treated as a prim-
itive in the bare model. We identify two new require-
ments: leak-freedom and immediate-revocation which
are necessary for a large class of commercial applica-
tions. Informally, leak-freedom means that a signer cannot
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convince anyone! that it generated a given group signa-
ture. Whereas, immediate-revocation means that a group
member’s revocation results in immediate inability of gen-
erating group signatures, i.e., a revoked member cannot any
further group signatures.

Why is leak-freedom important? One of the main pur-
poses of group signatures is for an organization to con-
ceal its internal structure. Suppose Alice is an employee of
a company (say, ABC) authorized to sign purchase orders
and one of the suppliers is another company XYZ. If Al-
ice — without revealing her private key or any other long-
term secret — can convince XYZ that she is the signer of
a given purchase order, she could obtain illegal kickbacks
from XYZ as “gratitude” for her supplier selection. This
sort of information leakage illustrates potential abuses of
group signatures, and justifies the introduction of the leak-
freedom property to block such abuses.

Why is immediate-revocation important? We continue
with the previous example: any purchase order signed by
Alice (on behalf of her employer ABC) for a supplier XYZ
imposes certain financial and/or legal responsibilities on
ABC. However, if Alice is aware of her impending lay-off,
she could, in collusion with XYZ, sign fraudulent purchase
orders for ABC. (Note that this problem is less grave in tra-
ditional public key infrastructures where such “poisoned”
signatures cannot be attributed to anyone other than the
signer herself.) This sort of abuse is possible in all current
group signature schemes, unless we make very strong as-
sumptions about underlying communication channels [23].
To this end, immediate-revocation is necessary to block
such abuses without having to introduce unrealistic assump-
tions.

1.1. Our Contributions

This paper makes two noteworthy contributions. First,
as mentioned above, we identify two important new secu-
rity properties: leak-freedom and immediate-revocation.
Second, we construct a secure and practical group signature
scheme that satisfies both new and existing security proper-
ties. The proposed is very efficient: only 11 exponentiations
are needed to generate a group signature, while the cost
of signature verification is equivalent to verifying a single
plain (i.e., non-group) signature, such as RSA. These costs
are appreciably lower than those of state-of-the-art group
signature schemes [9], [34].

The new scheme also offers two important advantages
over previous work:

e It removes the burden of having all signers and all ver-
ifiers constantly obtaining and maintaining up-to-date

1 Except the group manager who can anyway always identify a signer.

“state information” pertaining to current membership.
In prior work, either all signers and all verifiers had to
be aware of public revocation lists [7, 2], or all sign-
ers had to be aware of public accumulator ingredient
lists [9, 34]. In the proposed scheme, the issue of dy-
namic group membership is fully transparent to both
signers (group members) and verifiers.

o [t relaxes the requirement for underlying anonymous
communication channels, since a group member does
not need to communicate directly with signature veri-
fier(s). Whereas, anonymous communication channels
are essential (although rarely mentioned explicitly) in
previous group signature schemes.

Outline: the rest of this paper is organized as follows: the
next section provides the definitions of group signatures and
their desired security requirements. Section 3 presents the
new group signature scheme. Section 4 discusses several ex-
tensions and Section 5 concludes the paper.

2. Definitions

Definition 2.1 A group signature scheme includes the fol-
lowing components:

Setup: a probabilistic polynomial-time algorithm that, on
input of a security parameter k, outputs the specification
of a cryptographic context including the group manager’s
public key pkga and secret key skg .

Join: a protocol between the group manager GM and a
user that results in the user becoming a group member U.
Their common output includes the user’s unique member-
ship public key pky, and perhaps some updated information
that indicates the current state of the system. The user’s out-
put includes a membership secret key sky.

Revoke : an algorithm that, on input of a group member’s
identity (and perhaps her public key pky), outputs updated
information that indicates the current state of the system af-
ter revoking the membership of a given group member.

Sign: a probabilistic algorithm that, on input of a group
public key pkga, a user’s membership secret/public key-
pair (sky, pky), and a message m, outputs a group signa-
ture 6 of m.

Verify: an algorithm that, on input of a group public key
pkga, a group signature 6, and a message m, outputs a bi-
nary value TRUE/FALSE indicating whether ¢ is a valid
group signature (under pkgaq) of m.

Open: an algorithm executed by the group manager GM.
It takes as input of a message m, a group signature 0, the
group public key pka s and the group manager’s secret key
skgm. It first executes VERIFY on the first three inputs
and, if the ¢ is valid, outputs some incontestable evidence
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(e.g., a membership public key pky and a proof) that al-
lows anyone to identify the actual signer.

We now specify the desired security properties of a
group signature scheme. These properties are presented in-
formally; a more formal specification appears in the full ver-
sion of this paper [21]. We note that, although we use the no-
tions of full-traceability and full-anonymity introduced in
[4], the definitions of [4] have to be amended to accommo-
date dynamic groups, since [4] only considers static groups.

Definition 2.2 A secure group signature scheme must have
the following properties: correctness, full-traceability,
full-anonymity, no-misattribution, as well as the newly in-
troduced leak-freedom and immediate-revocation.

Correctness: any signature produced by any group mem-
ber using Sign must be accepted by Verify.

Full-traceability: no subset of colluding group members
(even consisting of the entire group, and even in posses-
sion of the group manager’s secret key for opening signa-
tures) can create valid signatures that cannot be opened, or
signatures that cannot be traced back to some member of
the colluding coalition.

Full-anonymity: it is computationally infeasible for an ad-
versary (who is not in possession of the group manager’s se-
cret key for opening signatures) to recover the identity of the
signer from a group signature, even if the adversary has ac-
cess to the secret keys of all group members.

No-misattribution: it is computationally infeasible for a
group manager to provably attribute a group signature to
a member who is not the actual signer.

Leak-freedom: it is computationally infeasible for a signer
to convince anyone that it actually signed a given message,
even If it possesses all other signers’ secrets, except the
group manager’s secret for opening signatures.

Immediate-revocation: it is computationally infeasible for
a group member revoked at time t to generate a valid group
signature at any time t' > t.

3. Our Construction

Unlike most prior work, our construction is designed
from a systems, rather than purely cryptographic, perspec-
tive. (Nonetheless, cryptography still plays a major role in
our construction.) The main idea is the introduction of a new
entity referred to as the mediation server (MS). MS is an
on-line partially trusted server that helps in signature gener-
ation and membership revocation.

Roughly speaking, the system functions as follows: each
time a group member needs to generate a signature, it some-
how “identifies” itself to the mediation server which then

(if the member is not revoked) produces a normal signature.
This normal signature is the actual group signature and may
be delivered to intended verifier(s). Nevertheless, the mere
introduction of the mediation server does not imply that we
can trivially obtain a group signature scheme possessing all
desired security properties.

Caveat: unlike prior non-interactive group signature
schemes, our scheme requires some light-weight interac-
tion (which explains why it is able to satisfy all of the
requirements). While interaction can be viewed as a draw-
back, we claim that it constitutes a reasonable (even
small) price to pay for additional attained security proper-
ties.

3.1. Further Motivation

At this point, one might wonder whether a practical so-
lution that satisfies all aforementioned requirements can be
obtained in a trivial fashion. A trivial approach that satis-
fies all aforementioned requirements is to make the group
manager an on-line entity and have it “filter” all group sig-
nature requests. Each group member has a private chan-
nel to the group manager GM and, for each message to
be signed, it submits a message signed under its normal
long-term signature key. G M then “translates” each incom-
ing signature into a signature under its own well-known
group signature key. The latter is then released to the ver-
ifier(s) and treated as a group signature. With this trivial so-
lution all security properties (including leak-freedom and
immediate-revocation) are satisfied and signature genera-
tion/verification costs are minimal.

However, the trivial approach requires constant ironclad
security of the GM. If this can be assured, then the trivial
solution is perfect. However, having a fully trusted on-line
entity is undesirable and sometimes simply unrealistic.”> A
on-line G M would be a single point of failure in terms of
both security (i.e., compromise of G M means compromise
of the whole system) and anonymity (i.e., a dishonest G M
can arbitrarily “open” a group signature without being held
accountable). It essentially “puts all eggs in one basket.”
One standard way to avoid a single point of failure is to uti-
lize distributed cryptography, which usually takes a heavy
toll in system complexity, including: management, compu-
tation and communication. To avoid unnecessary complex-
ity and subtleties, we design a system under the guidance
of the well-known separation of duty principle. (See the
seminal work of Clark and Wilson [20] for necessary back-
ground.) This approach, as will be shown below, facilitates
a practical solution with a similar flavor of distributed secu-
rity, i.e., compromise of either GM or the newly introduced

2 For much the same reasons that Certification Authorities (CAs) are not
on-line.
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mediation server MS, but not both, does not imply com-
plete compromise of the system.

3.2. Model

PARTICIPANTS: a set of group members U where |U| = n,
a group manager G M who admits group members, a medi-
ation server MS who revokes group members (according
to GM’s instructions) and a set of signature receivers. Each
participant is modeled as a probabilistic polynomial-time
interactive Turing machine. We assume that MS maintains
a dynamic membership database DBMember-MS and G M
maintains a similar dynamic membership database DBUser-
GM. Moreover, we assume that MS maintains a database
DBSig-MS that records all signature transactions. We fur-
ther assume that this database is never compromised. In
practice, various uncomplicated protection mechanisms can
be utilized.?

COMMUNICATION CHANNELS: all communication chan-
nels are asynchronous and under adversary’s control, ex-
cept the channel between GM and MS. In a typical sys-
tem configuration, we do not assume any anonymous chan-
nels. However, we do assume that the channels between a
group member U € U and G M, and between GM and MS
are authentic. (This can be implemented via standard tech-
niques and is thus ignored in the rest of the paper).

TRUST: precise specification of the trust model is admit-
tedly difficult mainly because of the introduction of the
new party (MS). Nevertheless, taking into account the
separation-of-duty principle, we have the following:

1. GM is trusted not to introduce any illegal (or phantom)
group members. However, G M may want to frame an
honest group member.

2. MS is trusted to enforce GM’s policy, e.g., to refuse
services to any and all revoked group members; equiv-
alently, to produce group signatures only for legitimate
members. MS is assumed not to misbehave if such ac-
tivity will be traced to it. Nonetheless, MS may at-
tempt to: 1) frame an honest member into signing a
message, 2) generate an unattributable group signa-
ture, and 3) compromise anonymity of an honest group
member (e.g., via out-of-band means).

SECURITY DEFINITIONS: in order to accommodate the
new entity (MS), we need to slightly amend some parts
of Definition 2.2 for our setting. The changes are minimal

3 For example, MS can use a decoy technique and insert (n — 1)
well-formed dummy transaction records for each genuine one. Alter-
natively, the database can be kept encrypted with the encryption key
protected using some advanced cryptographic techniques. These and
other approaches and their respective merits are discussed in the full
version of this paper [21].

but necessary for the sake of clarity. (The rest of the defini-
tions remains unchanged.)

Definition 3.1 Full-traceability: the set of colluders can
additionally include MS.

Full-anonymity: the adversary is additionally allowed to
have access to the secret key(s) of MS.

Leak-freedom: it is infeasible for a signer to convince any-
one (except MS) that it generated a group signature; it is
infeasible for MS to convince anyone (except GM ) that a
certain group member generated a group signature.

3.3. Accountable Designated Verifier Signatures

We introduce the notion of accountable designated veri-
fier signatures (ADVS) that will serve as the building block
in our group signature scheme. This notion is an enhance-
ment of the private contract signatures introduced in [25].
Informally, a private contract signature is a designated ver-
ifier signature that can be converted into a universally-
verifiable signature by either the signer or a trusted third
party appointed by the signer. An accountable designated
verifier signature scheme, on the other hand, emphasizes the
trusted third party’s capability to identify the actual signer
of a valid signature.

Definition 3.2 Let P; and P; be two distinct entities and
T be a trusted third party. Suppose P; is the signer and
P; is the verifier. An accountable designated verifier sig-
nature scheme, ADVS, is a tuple of polynomial-time algo-
rithms (ADVS-Sign, ADVS-Ver, ADVS-Proof) defined
as follows:

ADVS-Sign: an algorithm executed by P; on message m
to output an ADVS: 6 = ADVS-Signp, (m, P;,T).

ADVS-Ver : an algorithm which allows P; to verify the va-
lidity of an input tag 6 on message m, such that:
ADVS-Ver(m, P;, P;,T; ) =
TRUE if § = ADVS-Signp (m,P;,T)
{ FALSE otherwise

ADVS-Proof : an algorithm executed by T on input P;,
m, Pj, and tag 6. It outputs a proof for the predicate
SignedBy(d, P;) which is TRUE if § is produced by P;, and
FALSE otherwise.

We require that, if 6 = ADVS-Signp, (m,P;,T), then:
ADVS-Ver(m, P;, P;,T;5) = TRUE and T always out-
puts a proof for SignedBy (9, P;) being TRUE.

Definition 3.3 An ADVS scheme is secure if the following
properties are satisfied:

Unforgeability of ADVS-Signp, (m, P;,T): for any m, it
is infeasible for any P ¢ {P;, P;} to produce §, such that
ADVS-Ver(m, P;, P;,T;$) = TRUE.
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Non-transferability of ADVS-Signp. (m,P;,T): for
Pj, there is a polynomial-time forgery algorithm
which, for any m, P;, and T, outputs § such that
ADVS-Ver(m, P;, P;,T;0) = TRUE.

Unforgeability of the proof for SignedBy(9, P;): for any
0 = ADVS-Signp, (m,P;,T), it is infeasible for any
P ¢ {T, P;} to produce a proof for SignedBy(4, P;) be-
ing TRUE.

We need to further differentiate between the case that P;
is able to produce a proof for SignedBy(d, P;) and the case
that P; is unable to do so. Although the former is desir-
able in the context of private contract signatures, it is unde-
sirable in our setting. This is because private contract signa-
tures only intend to prevent P; transferring the one bit infor-
mation SignedBy(d, P;) by any means. Whereas, it would
be very useful in our context for both P; and P; not to be
able to leak the bit: SignedBy(d, P;). Thus, we have the fol-
lowing definition:

Definition 3.4 An ADVS scheme is strongly-secure if,
in addition to being a secure ADVS scheme, it en-
sures that a signer P; cannot produce a proof for
SignedBy(0, P;) with non-negligible probability, where
0 = ADVS-Signp. (m, P;,T).

A strongly-secure ADVS scheme can allow us to eas-
ily construct a simple leak-free group signature system.
Unfortunately, we do not know how to construct such a
scheme, so we leave it as an interesting open problem. In
order to facilitate a group signature scheme that is leak-
free with immediate-revocation, we utilize a secure ADVS
scheme that is based on the ideas in [25]. Due to space lim-
itation, the details appear in the full version of this paper
[21].

3.4. Leak-free Group Signatures with Immediate
Revocation

We are finally ready to present a concrete construction.
The basic operation of our scheme is as follows. Given a
message m, a group member Uf; presents an ADVS § =
ADVS-Sign, (m, MS,GM) to MS requesting (and ob-
taining) a plain signature ¢ = Sign,,g(m). The latter
is viewed as a group signature, for which there is a sin-
gle group-wide verification key. Note that, since GM plays
the role of a trusted third party in the ADVS scheme, it
can hold an actual signer accountable. We also note that
our trust model implies that there are no issues with the
fair exchange of § = ADVS-Signy, (m, MS,GM) for
0 = Sign,,s(m), even if o is returned to the user. Follow-
ing the definition of group signatures, our mediated group
signature scheme consists of the following procedures:

SETUP: this procedure initializes a group manager G M
and a mediation server MS.

1. GMchooses a system wide security parameter k.
Based on it, GMchooses a discrete-logarithm based
crypto-context as in a normal Schnorr signature set-
ting. The parameter x and the crypto-context are fol-
lowed system-wide by all group members, the MS
and GM itself. GMinitializes a set U wherein
each group member will be assigned a unique iden-
tity U; € U. GMithen instantiates an ADVS scheme
ADVS as well as its own public/private key-pair:
(Yom = g%, Xgaq). Finally, GMinitializes the
database DBUser-GM.

2. The initialization of the mediation server MS con-
sists of the following: choose a pair of ADVS pub-
lic and private keys (Yaps = g MS, Xps) in
the same crypto-context as in step 1. Choose a
pair of keys for a normal digital signature scheme
SIG = (Gen,Signams,Verps) that is secure
against adaptive chosen-message attack [27]. De-
note by (pkas, skams) the pair of group signature
verification and generation keys, where pkas is pub-
licly known.* Initialize databases DBMember-MS and
DBSig-MS.

JOIN: whenever GM decides to admit a new member, it
first assigns a unique identity U;. U; generates its ADVS
public/private key-pair: (Y, = ¢, Xy.). Yy, is then
registered at the G M and MS; both DBMember-GM and
DBMember-MS are updated accordingly.

SIGN: whenever a group member If; wants to generate a
group signature on message m, the following protocol is ex-
ecuted:

1. U, sends MS an ADVS ¢ = ADVS-Signy, (m, MS,GM)

over an insecure public (and unauthenticated) chan-
nel.

2. Upon receipt, MS retrieves U;’s public key Yy, from
its database DBMember-MS. If no entry is found, MS
simply ignores the request; otherwise, MS verifies §
by checking whether ADVS-Ver(m, MS,GM;d) =
TRUE. If it is, M then produces a normal signature
v = Sign,,s(m) and inserts a new record (U, 6,7)
into its database DBSig-MS. The signature -y is a group
signature on message m.

VERIFY: given pk s, the public group signature verifica-
tion key of MS, and a tag v, anyone can establish whether
~ is a valid (group) signature by running Ver (s on input:
pkas, m, and 7.

4 We assume that MS knows sk s in its entirety so as to prevent at-
tacks due to incorrect system initialization. This can be ensured by uti-
lizing techniques due to [35].
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REVOKE : whenever G M decides to revoke membership of
U;, it first updates DBUser-GM indicating that U/; is revoked
and logs the necessary information. G M then informs MS
that ; is revoked. and MS proceeds to delete the entry
(Ui, Yy, ) from its database DBMember-MS. Consequently,
all subsequent signature requests from f; will be rejected
by MS.

OPEN: whenever GM decides to identify the actual signer
of signature v on message m, the following protocol is ex-
ecuted by GM and MS:

1. GM sends v to MS via an authenticated channel.

2. MS retrieves (U;, d, ) from its database and sends it
to GM via the same authenticated channel.

3. GM checks whether ADVS-Ver(m, MS,GM;d) =
TRUE. If so, GM executes ADVS-Proof to pro-
duce a proof for SignedBy(4, U;); otherwise, G M con-
cludes that MS is cheating.

Remark: the above protocol does not specify how a group
signature is sent to its intended verifier(s). There are two
options. One way that allows us to completely get rid of the
anonymous channels is to let MS send -y directly to the ver-
ifier(s). In this case, there may be a need for a random de-
lay to address potential traffic analysis (see further discus-
sion below). Note that this kind of delay already exists in
the anonymous channels currently available. The other way
is to let MS broadcast y so that I4; can receive and re-send
~ to the verifier(s) via an anonymous channel. We prefer the
former, however, a detailed analysis is deferred to [21].

3.5. Security Analysis

Theorem 3.1 Our scheme satisfies the requirements
specified in Definition 3.1, namely correctness, full-
traceability, full-anonymity, no-misattribution, leak-
freedom, and immediate-revocation.

A formal proof of this theorem appears in a full version
of this paper [21]. Intuitively, the theorem holds because the
final group signatures are generated using a standard signa-
ture algorithm, and ADVS makes it infeasible for the group
members or MS to cryptographically prove the linkage be-
tween a signature request and the resulting group signature.

4. Extension and Discussion

Enhancing anonymity against traffic analysis. Our
scheme does not assume that the channel between a
group member U and the mediation server MS is au-
thenticated or anonymous. This is because MS may
have incentives to cheat an outsider, which, in turn, im-
plies:

1. Even if the adversary eavesdrops on all channels, there
could still be an out-of-band channel between a group
member and MS. Thus, the adversary could still be
fooled.

2. MS can easily cheat an outsider by injecting a fake
ADVS into the network or its database DBSig-MS.

However, an adversary might know that MS, while not
being trusted to preserve anonymity, does not always inject
fake traffic into the network. Then, an adversary has a good
chance of compromising anonymity of some honest group
members by means of traffic analysis. Fortunately, this can
be avoided by using standard techniques, such as end-to-end
encryption and traffic padding.

On strongly-secure ADVS vs. secure ADVS. In our con-
struction we utilized an ADVS that is secure, but not
strongly-secure. Consequently, we assume the secrecy
of MS’s storage, particularly DBSig-MS consisting of
all signature transaction entries. This is necessary in or-
der to avoid the following attack: If an attacker has
access to an entry in DBSig-MS, then Alice can con-
vince the attacker that she generated a group signature
Signas(m). Clearly, if a strongly-secure ADVS is uti-
lized, we can achieve strictly stronger security that Alice
is unable to convince XYZ that she generated a signa-
ture, even if XYZ has access to the corresponding en-
try in DBSig-MS. It seems non-trivial to ensure secrecy
of DBSig-MS, while preserving other desirable prop-
erties. We continue investigating technical mechanisms
that can replace this rather strong assumption regard-
ing database secrecy [21].

Denial-of-Service (DoS) attacks. Recall than MS always
performs a number of modular exponentiations before it is
able to determine whether an incoming ADVS is valid. This
opens the door for DoS attacks on MS. To counter such at-
tacks, we suggest a simple solution. The idea is to let each
U; and M share a unique secret key w;. Each signature re-
quest from U/; must also be accompanied by an authentica-
tion token computed over the request with the key w;. When
processing a request, MS verifies the authentication token
before performing much more expensive validation of the
ADVS. Note that this additional authentication is does not
in any way influence security properties of our scheme. Of
course, this is only a partial solution since an adversary can
still mount a DoS attack on the MS’s network interface.

4.1. Related Work

This paper can be viewed as one of many efforts pursu-
ing practical and secure group signature or identity escrow
schemes [18, 19, 13, 29, 1, 11], as well as anonymous cre-
dential systems [16, 17, 30, 10, 14]. Among them, the prior
work most relevant to this paper is [11], which presented an
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identity escrow scheme (and a corresponding group signa-
ture scheme) with the appointed verifier property. The mo-
tivation was to obtain a scheme where a group member can
only convince one or more appointed verifiers of its mem-
bership, while no other party can verify membership even if
the signer cooperates fully.

Note that there is a difference between the appointed
verifier property in [11] and the leak-freedom property
specified in this paper. Specifically, the scheme in [11], by
definition, allows a signer to convince the designated ver-
ifiers that it is authorized to conduct the relevant transac-
tions. Cast this in our example scenario, Alice can always
convince XYZ that she is authorized to sign purchase or-
ders. This capability can result in the leakage (outlined in
Section 1) we meant to avoid! Besides achieving the strictly
stronger leak-freedom, our scheme is more efficient than
[11] which requires both a signer and a verifier to compute
more than 17k exponentiations, where k is a security pa-
rameter (say, k = 80). Moreover, membership revocation
is not supported in [11], whereas, we achieve immediate-
revocation which has only been explored in the context of
traditional PKI-s [6].

A credential system is a system where users can obtain
credentials from organizations and demonstrate possession
of these credentials [16, 17, 30, 10, 14]. Chaum and Evertse
[17] presented a general scheme using a semi-trusted TTP
common to multiple organizations. However, their scheme
is impractical. The credential system by Lysianskaya et al.
[30] captures many of the desirable properties. Camenisch
and Lysianskaya [10] presented a better solution with in-
gredients from a secure group signature scheme of [1]. The
prototype implementation of [10] was done by Camenisch
and van Herreweghen [14]. This scheme requires both sign-
ers and verifiers to compute 22 modular exponentiations.
Their advanced scheme which provides all-or-nothing non-
transferability (to discourage a signer from sharing its cre-
dentials with other parties) requires both signer and verifier
to compute 200 exponentiations.

The notion of abuse-freedom or abuse-freeness [25] is
weaker than leak-freedom because the former intends only
to prevent the designated verifier from being able to trans-
fer the information about the actual signer, whereas the lat-
ter intends to prevent a signer as well as the designated ver-
ifier from being able to transfer the same information. Fi-
nally, we remark that leak-freedom is similar to the prop-
erty called receipt-freedom or receipt-freeness in the context
of voting schemes [5, 28], and its closely related variants
called deniable encryption [15] and deniable proof [24].

5. Conclusion

We identified two properties, namely leak-freedom and
immediate-revocation, that are crucial for a large class of

group signature applications. We also constructed a scheme
that achieves all of traditional and newly-introduced goals
by following a systems architectural approach. Our scheme
is practical and easy to implement, because it needs only 11
exponentiations for a group member to generate a group sig-
nature and one normal signature verification for its valida-
tion. Another contribution of this paper is the relaxation on
the requirement for anonymous communication channels,
which are essential in all previous schemes.

In addition to the already mentioned issues (including
the protection of the server databases, and the robustness
against denial-of-service attacks) that need further investi-
gations, our work also incurs some problems that are inter-
esting in an even more general context:

1. How to construct a practical strongly-secure ADVS
scheme?

2. How to construct a leak-free group signature scheme
with immediate revocation that does not rely on a me-
diation server? Although we believe that the existence
of a mediation server is more realistic than the exis-
tence of (for instance) a time-stamping service, it is
nevertheless conceivable that other alternatively con-
structions could fit well into different specific applica-
tion scenarios.

3. How to achieve a stateless MS? This is not trivial be-
cause, otherwise, the binding of an ADVS signature (or
any other token with the desired properties) and a nor-
mal signature would allow MS to convince an out-
sider of the identity of the actual signer.
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We present a new approach for fine-grained control over users’ security privileges (fast revocation
of credentials) centered around the concept of an on-line semi-trusted mediator (SEM). The use of
a SEM in conjunction with a simple threshold variant of the RSA cryptosystem (mediated RSA)
offers a number of practical advantages over current revocation techniques. The benefits include
simplified validation of digital signatures, efficient certificate revocation for legacy systems and fast
revocation of signature and decryption capabilities. This paper discusses both the architecture
and the implementation of our approach as well as its performance and compatibility with the
existing infrastructure. Experimental results demonstrate its practical aspects.

Categories and Subject Descriptors: E.3.3 [Data]: Data Encryption—Public Key Cryptosystems;
K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms: Algorithms, Security
Additional Key Words and Phrases: Certificate Revocation, Digital Signatures, Public Key In-
frastructure

1. INTRODUCTION

We begin this paper with an example to illustrate the premise for this work. Con-
sider an organization — industrial, government, or military — where all employees
(referred to as users) have certain authorizations. We assume that a Public Key
Infrastructure (PKI) is available and all users have digital signature, as well as
en/de-cryption, capabilities. In the course of performing routine everyday tasks,
users take advantage of secure applications, such as email, file transfer, remote
log-in and web browsing.
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Now suppose that a trusted user (Alice) does something that warrants immediate
revocation of her security privileges. For example, Alice might be fired, or she may
suspect that her private key has been compromised. Ideally, immediately following
revocation, the key holder, either Alice herself or an attacker, should be unable to
perform any security operations and use any secure applications. Specifically, this
might mean:

— The key holder cannot read any secure email. This includes encrypted email that
already resides on Alice’s email server (or local host) and possible future email
erroneously encrypted for Alice. Although encrypted email may be delivered to
Alice’s email server, the key holder should be unable to decrypt it.

— The key holder cannot generate valid digital signatures on any further messages.
However, signatures generated by Alice prior to revocation may need to remain
valid.

— The key holder cannot authenticate itself to corporate servers (and other users)
as a legitimate user.

Throughout the paper, we use email as an example application. While it is a

popular mechanism for general-purpose communication, our rationale also applies

to other secure means of information exchange.

To provide immediate revocation it is natural to first consider traditional re-
vocation techniques. Many revocation methods have been proposed; they can be
roughly classified into two prominent types: 1) explicit revocation structures such
as Certificate Revocation Lists (CRLs) and variations on the theme, and 2) real
time revocation checking such as the Online Certificate Status Protocol (OCSP)
[Myers et al. 1999] and its variants. In both cases, some trusted entities are ulti-
mately in charge of validating user certificates. However, the above requirements
for immediate revocation are impossible to satisfy with existing techniques. This
is primarily because they do not provide fine-grained enough control over users’
security capabilities. Supporting immediate revocation with existing revocation
techniques would result in heavy performance cost and very poor scalability, as
discussed in Section 8.

As pointed out in [McDaniel and Rubin 2000], since each revocation technique
exhibits a unique set of pros and cons, the criteria for choosing the best tech-
nique should be based on the specifics of the target application environment. Fast
revocation and fine-grained control over users’ security capabilities are the moti-
vating factors for our work. However, the need for these features is clearly not
universal since many computing environments (e.g., a typical university campus)
are relatively “relaxed” and do not warrant employing fast revocation techniques.
However, there are plenty of government, corporate and military settings where fast
revocation and fine-grained control are very important.

Organization. This paper is organized as follows. The next section provides
an overview of our work. The technical details of the architecture are presented
in Section 3 and Section 4, respectively. Then, Section 5 shows four extensions.
Sections 6 and 7, describe the implementation and performance results, respectively.
A comparison of with current revocation techniques is presented Section 8, followed
by the overview of related work in Section 8.2 and a summary in Section 9.
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2. OVERVIEW

We refer to our approach as the SEM architecture. The basic idea is as fol-
lows: We introduce a new entity, referred to as a SEM (SEcurity Mediator): an
online semi-trusted server. To sign or decrypt a message, a client must first ob-
tain a message-specific token from its SEM. Without this token, the user cannot
accomplish the intended task. To revoke the user’s ability to sign or decrypt, the
security administrator instructs the SEM to stop issuing tokens for that user’s fu-
ture request. At that instant, the user’s signature and/or decryption capabilities
are revoked. For scalability reasons, a single SEM serves many users.

We stress that the SEM architecture is transparent to non-SEM users, i.e., a SEM
is not involved in encryption or signature verification operations. With SEM’s help,
a SEM client (Alice) can generate standard RSA signatures, and decrypt standard
ciphertext messages encrypted with her RSA public key. Without SEM’s help, she
cannot perform either of these operations. This backwards compatibility is one of
our main design principles.

Another notable feature is that a SEM is not a fully trusted entity. It keeps
no client secrets and all SEM computations are checkable by its clients. However,
a SEM is partially trusted since each signature verifier implicitly trusts it to have
checked the signer’s (SEM’s client’s) certificate status at signature generation time.
Similarly, each encryptor trusts a SEM to check the decryptor’s (SEM’s client’s)
certificate status at message decryption time. We consider this level of trust rea-
sonable, especially since a SEM serves a multitude of clients and thus represents an
organization (or a group).

In order to experiment and gain practical experience, we prototyped the SEM
architecture using the popular OpenSSL library. SEM is implemented as a daemon
process running on a secure server. On the client side, we built plug-ins for the
Eudora and Outlook email clients for signing outgoing, and decrypting incoming,
emails. Both of these tasks are performed with the SEM’s help. Consequently,
signing and decryption capabilities can be easily revoked.

It is natural to ask whether the same functionality can be obtained with more
traditional security approaches to fine-grained control and fast credential revoca-
tion, such as Kerberos. Kerberos [Neuman and Ts’o 1994], after all, has been in
existence since the mid-80s and tends to work very well in corporate-style settings.
However, Kerberos is awkward in heterogeneous networks such as the Internet; its
inter-realm extensions are difficult to use and require a certain amount of manual
setup. Furthermore, Kerberos does not inter-operate with modern PKI-s and does
not provide universal origin authentication offered by public key signatures. On the
other hand, the SEM architecture is fully compatible with existing PKI systems. In
addition, the SEM is only responsible for revocation. Unlike a Kerberos server, the
SEM cannot forge user signatures or decrypt messages intended for users. As we
discuss later in the paper, our approach is not mutually exclusive with Kerberos-
like intra-domain security architectures. We assert that the SEM architecture can
be viewed as a set of complementary security services.
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2.1 Decryption and signing in the SEM architecture

We now describe in more detail how decryption and digital signature generation
are performed in the SEM architecture:

— Decryption: suppose that Alice wants to decrypt an email message using her
private key. Recall that public key-encrypted email is usually composed of two
parts: (1) a short preamble containing a per-message key encrypted with Alice’s
public key, and (2) the body containing the actual email message encrypted using
the per-message key. To decrypt, Alice first sends the preamble to her SEM. SEM
responds with a token which enables Alice to complete the decryption of the per-
message key and, ultimately, to read her email. However, this token contains no
information useful to anyone other than Alice. Hence, communication with the
SEM does not need to be secret or authenticated. Also, interaction with the SEM
is fully managed by Alice’s email reader and does not require any intervention on
Alice’s part. If Alice wants to read her email offline, the interaction with the SEM
takes places at the time Alice’s email client downloads her email from the mail
server.

— Signatures: suppose that Alice wishes to sign a message using her private key.
She sends a (randomized) hash of the message to her SEM which, in turn, responds
with a token (also referred to as a half-signature) enabling Alice to generate the
signature. As with decryption, this token contains no useful information to anyone
other than Alice.

2.2 Other Features

Our initial motivation for introducing a SEM is to enable immediate revocation of
Alice’s public key. As a byproduct, the SEM architecture provides additional ben-
efits. In particular, validation of signatures generated with the help of a SEM does
not require the verifier to consult a CRL or a revocation authority: the existence
of the a verifiable signature implies that the signer was not revoked at the time the
signature was generated. Consequently, signature validation is greatly simplified.
More importantly, the SEM architecture enables revocation in legacy systems that
do not support certificate revocation. Consider a legacy system performing digital
signature verification. Often, such systems have no certificate status checking ca-
pabilities. For example, old browsers (e.g., Netscape 3.0) verify server certificates
without any means for checking certificate revocation status. Similarly, Microsoft’s
Authenticode system in Windows NT (used for verifying signatures on executable
code) does not support certificate revocation. In the SEM architecture, certificate
revocation is provided without requiring any change to the verification process in
such legacy systems. The only aspect that needs changing is signature genera-
tion. Fortunately, in many settings (such as code signing) the number of entities
generating signatures is significantly smaller than that of entities verifying them.

Semantics. The SEM architecture naturally provides the following semantics for
digital signatures:

Binding Signature Semantics: a digital signature is considered valid
if the public key certificate associated with the private key used to gen-
erate the signature was valid at the time the signature was issued.
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According to this definition, all verifiable signatures — by virtue of their existence
— are generated prior to revocation and, hence, are considered valid. Binding sig-
nature semantics are natural in many settings, such as business contracts. For
example, suppose Alice and Bob enter into a contract. They both sign the contract
at time 7. Bob begins to fulfill the contract and incurs certain costs in the process.
Now, suppose at time 7" > T, Alice revokes her own certificate (e.g., by “losing”
her private key). Is the contract valid at time 7'? With binding semantics, Alice
is still bound to the contract since it was signed at time T when her certificate
was still valid. In other words, Alice cannot nullify the contract by causing her
own certificate to be revoked. We note that binding semantics are inappropriate
in some scenarios. For example, if a certificate is obtained from a CA under false
pretense, e.g., Alice masquerading as Bob, the CA should be allowed to declare at
any time that all signatures generated with that certificate are invalid.

Implementing binding signature semantics with existing revocation techniques is
non-trivial, as discussed in Section 8. Whenever Bob verifies a signature generated
by Alice, Bob must also check that Alice’s certificate was valid at the time the
signature was generated. In fact, every verifier of Alice’s signature must perform
this certificate validation step. Note that, unless a trusted time-stamping service
is involved in generating all of Alice’s signatures, Bob cannot trust the timestamp
included by Alice in her signatures.

Not surprisingly, implementing binding semantics with the SEM architecture is
trivial. To validate Alice’s signature, a verifier need only verify the signature itself.
There is no need to check the status of Alice’s certificate. (We are assuming here
that revocation of Alice’s key is equivalent to revocation of Alice’s certificate. In
general, however, Alice’s certificate may encode many rights, not just the right
to use her key(s). It is then possible to revoke only some of these rights while
not revoking the entire certificate.) Once Alice’s certificate is revoked, she can no
longer generate valid signatures. Therefore, the mere existence of a valid signature
implies that Alice’s certificate was valid at the time the signature was issued.

3. MEDIATED RSA

We now describe in detail how a SEM interacts with clients to generate tokens.
The SEM architecture is based on a variant of RSA which we call Mediated RSA
(mRSA). The main idea is to split each RSA private key into two parts using
simple 2-out-of-2 threshold RSA [Gemmel 1997; Boyd 1989]. One part is given to
a client and the other is given to a SEM. If the client and its SEM cooperate, they
employ their respective half-keys in a way that is functionally equivalent to (and
indistinguishable from) standard RSA. The fact that the private key is not held in
its entirety by any one party is transparent to the outside world, i.e., to the those
who use the corresponding public key. Also, knowledge of a half-key cannot be
used to derive the entire private key. Therefore, neither the client nor the SEM
can decrypt or sign a message without mutual consent. (Recall that a single SEM
serves many clients.)

The mRSA method is composed of three algorithms: mRSA key generation,
mRSA signatures, and mRSA decryption. We present them in the next section.

22



3.1 mRSA Key Generation

Similar to RSA, each client U; has a unique public key and private key. The public
key PK; includes n; and e;, where the former is a product of two large distinct
primes (p;,q;) and e; is an integer relatively prime to ¢(n;) = (p; — 1)(¢; — 1).
Logically, there is also a corresponding RSA private key SK; = (n;,d;) where
d; x e; = 1 mod ¢(n;). However, as mentioned above, no one party has possession
of d;. Instead, d; is effectively split into two parts: df and d;°™ which are secretly
held by the client U; and a SEM, respectively. The relationship among them is:

di = di" + di mod ¢(n;)

Unlike plain RSA, an individual client U; cannot generate its own mRSA keys.
Instead, a trusted party (most likely, a CA) initializes and distributes the mRSA
keys to clients. The policy for authenticating and authorizing clients’ key generation
requests is not discussed in this paper. Once a client’s request is received and
approved, a CA executes the mRSA key generation algorithm described below.

mRSA Key Setup. CA generates a distinct set: {p;, ¢;, e;, d;, di™, d¥} for U;.
The first four values are generated as in standard RSA. The fifth value, d*™, is
a random integer in the interval [1,n;], where n; = p;q;. The last value is set as:
d¥ = d; — di*™ mod ¢(n;). We show the protocol in Figure 1.

Algorithm: mRSA.key (executed by CA)
Let k (even) be a security parameter
(1) Generate random k/2-bit primes: p;,g;
(2) i — pigi

(3) e = Z;(”i)

(4) di — 1/e; mod ¢(n;)

(5) dgem™ & {1,...,n; — 1}

(6) dif « (di —d;i*™) mod ¢(n;)

(7) SK; «— (ngd¥)

(8) PK; «— (n;,e;)

Fig. 1. mRSA Key Generation Algorithm

After CA computes the above values, d;*™ is securely communicated to the SEM
and dY is communicated to U;. The details of this step are elaborated upon in
Section 6.

3.2 mRSA Signatures

According to PKCS1 v2.1 [Labs 2002], RSA signature generation is composed of
two steps: message encoding and cryptographic primitive computation. The first
step is preserved in mRSA without any changes. However, the second step requires
SEM'’s involvement since, in mRSA, a client does not possess its entire private key.

We denote by EC() and DC() the encoding and decoding functions, respectively.
Both encodings include hashing the input message m using a collision resistant hash
function. For now, we assume the message encoding function EC/() is determin-
istic. A user (U;) generates a signature on a message m as follows:
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1. Preprocessing: U; sends the message m to the SEM.

2. Computation:

— SEM checks that U; is not revoked and, if so, computes a partial signature
PSser = EC’(m)dfem mod n; and replies with it to the client. This PSge, is
the token enabling signature generation on message m.

— Concurrently, U; computes PS, = EC(m)d'? mod n;

3. Output: U; receives PSgey, and computes S;(m) = (PSgem * PSy) mod n;. It
then verifies S;(m) as a standard RSA signature. (This step also verifies the
SEM’s computation.) If the signature is valid, U; outputs it.

The algorithm is shown in Figure 2.

Algorithm mRSA.sign (executed by User and SEM)

(1) USER: Send m to SEM.
(2) In parallel:
2.1. SEM:
(a) If USER revoked return (ERROR);
(b) PSsem — EC(m)E™™ mod n;
where EC() is the EMSA-PKCS1-v1_5 encoding function, recommended
in [Labs 2002].
(c) send PSsem to USER
2.2. USER:
(a) PS, — EC(m)% mod n;
(3) USER: S « PSsem * PS, modn;
(4) USER: Verify that S is a valid signature on m under the public key (N, e;). If
not then return (ERROR)
(5) USER: return (m,S)

Fig. 2. mRSA Signature Algorithm

We observe that the resulting mRSA and RSA signatures are indistinguishable
since: w s« wh " = w4 = w% mod n. Consequently, the mRSA signature
generation process is transparent to eventual signature verifiers, since both the
verification process and the signature format are identical to those in standard

RSA.

Security. We briefly discuss the security of the signature scheme of Figure 2. At
a high level, we require two properties: (1) the user cannot generate signatures after
being revoked, and (2) the SEM cannot generate signatures on behalf of the user.
For both properties we require existential unforgeability under a chosen message
attack. Precise security models for this scheme (used in a slightly different context
of multicative version of mRSA) can be found in [Bellare and Sandhu 2001] where
a proof of security is given.

Randomized encodings. Note that, we assumed above that the encoding proce-
dure EC() is deterministic, as in EMSA-PKCS1-v1_5 [Labs 2002] encoding and Full
Domain Hash (FDH) encoding [Bellare and Rogaway 1996]. If EC() is a random-
ized encoding, such as EMSA-PSS [Labs 2002], we have to make sure both the user
and SEM use the same randomness so that the resulting signature is valid. At the
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same time, to prevent the user from generating signatures without its help, the SEM
has to ensure that the random bits used for the encoding are chosen independently
at random. Therefore, we cannot simply let the user choose the randomness for the
encoding. Instead, the user and the SEM must engage in a two-party coin flipping
protocol to generate the required shared randomness. Neither party can bias the
resulting random bits. Consequently, these bits can be used as the randomness
needed for the encoding function. However, when using deterministic encoding,
such as EMSA-PKCS1-v1_5, there is no need for this step.

We note that in the above protocol the user sends the entire message m to the
SEM in step (1). For privacy reasons, one might instead consider sending the digest
EC(m) the SEM. This would eliminate the difficulty with randomized encodings
mentioned above. Unfortunately, the resulting system cannot be shown as secure
as the underlying RSA signature scheme. Specifically, when only sending EC/(m)
to SEM, we are unable to prove that the user cannot generate signatures after being
revoked. The problem is that, while the user is not revoked, the SEM functions as
an unrestricted RSA inversion oracle for the user. For example, the user can use the
attack of [Desmedt and Odlyzko 1985] to generate signatures after being revoked.
A proof of security is still possible, using a strong assumption on RSA: a variant of
the “One-more RSA Assumption” [Bellare and Sandhu 2001]. Nevertheless, when
using EMSA-PKCS1-v1.5 [Labs 2002] encoding, which is only heuristically secure,
it might be fine to send EC(m) to the SEM.

3.3 mRSA Decryption

Recall that PKCS1 [Labs 2002] stipulates that an input message m must be OAEP-
encoded before carrying out the actual RSA encryption. We use EC,q¢p() and
DCouep() to denote OAEP encoding and decoding functions, respectively. The
encryption process is identical to standard RSA, where ¢ = ECqcp(m)® mod n;
for each client U;. Decryption, on the other hand, is very similar to mRSA signature
generation described above.
1. U; obtains encrypted message ¢ and forwards it to its SEM.
— SEM checks that U; is not revoked and, if so, computes a partial clear-text
PCyermn = %™ mod n; and replies to the client.
— concurrently, U; computes PC\,, = ¢® mod n,.
2. U; receives PC,,,, and computes ¢’ = PCj,, * PC,, mod n;. If OAEP decoding
of ¢/ succeeds, U; outputs the clear-text m = DClgep(c).

Security. We now briefly discuss the security of the mRSA decryption scheme
shown in Figure 3. At a high level, we require two properties: (1) the user cannot
decrypt ciphertexts encrypted with the user’s public key after being revoked, and
(2) the SEM cannot decrypt messages encrypted using the user’s public key. For
both properties we require semantic security under a chosen-ciphertext attack. Un-
fortunately, we cannot quite claim that the scheme above satisfies both properties.

OAEP and it variants are designed to provide chosen ciphertext security for RSA
encryption in the random oracle model. The protocol above provides chosen cipher-
text security against an attacker who is neither the SEM nor the user. However,
OAEP does not necessarily satisfy properties (1) and (2) above. The problem is
that the user can employ the SEM as an RSA inversion oracle until the user is
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Algorithm: mRSA.decryption (executed by User and SEM)

(1) USER: ¢ < encrypted message
(2) USER: send ¢ to SEM
(3) In parallel:
3.1. SEM:
(a) If USER revoked return (ERROR)
(b) PCsem e mod n;
(¢) Send PCsem to USER U;
3.2. USER
(a) PC} «— ¢4 mod n;
(4) USER: w « (PCsem * PCy) mod n;
(5) USER: OAEP decode w. If success, output m = DCogep(w).

Fig. 3. mRSA Decryption Algorithm

revoked. There is no way for the SEM to check whether a partial decryption it gen-
erates corresponds to a well-formed plaintext. However, as in the previous section,
security can be proven in a weaker model under a strong assumption on RSA. (A
detailed proof will be available in the extended version of this paper.)

We note that one way to make sure that the user cannot decrypt messages with-
out the help of the SEM would be to use a Chosen Ciphertext Secure threshold
cryptosystem [Shoup and Gennaro 1998; Canetti and Goldwasser 1999]. However,
this would render the resulting scheme incompatible with currently deployed en-
cryption systems (based on PKCS1).

3.4 Notable Features

As mentioned earlier, mRSA is only a slight modification of the RSA cryptosystem.
However, at a higher level, mRSA affords some interesting features.

CA-based Key Generation. Recall that, in a normal PKI setting with RSA, a pri-
vate/public key-pair is always generated by its intended owner. In mRSA, a client’s
key-pair is instead generated by a CA or some other trusted entity. Nonetheless,
a CA only generates client’s keys and does not need to keep them. In fact, a CA
must erase them to assure that any successful future attack on the CA does not
result in client’s keys being compromised. In spite of that, having a trusted entity
that generates private keys for a multitude of clients can be viewed as a liability.
If CA-based key generation is undesirable then one can use a protocol of [Boneh
and Franklin 2001] to distributively generate an RSA key between the SEM and
the user. The downside is that this requires more work than letting the CA gen-
erate the key and give shares to the user and SEM. We note that CA-based key
generation enables key escrow (provided that clients’ keys are not erased after their
out-of-band distribution). For example, if Alice is fired, her organization can still

access Alice’s encrypted work-related data by obtaining her private key from the
CA.

Fast Revocation. The main point of mRSA is that the revocation problem is
greatly simplified. In order to revoke a client’s public key, it suffices to notify that
client’s SEM. Each SEM merely maintains a list of revoked clients which is consulted
upon every service request. Our implementation uses standard X.509 Certificate
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Revocation Lists (CRL’s) for this purpose.

Transparency. mRSA is completely transparent to entities encrypting data for
mRSA clients and those verifying signatures produced by mRSA clients. To them,
mRSA appears indistinguishable from standard RSA. Furthermore, mRSA certifi-
cates are identical to standard RSA certificates. Thus, the SEM architecture is
completely backwards compatible for the signature verifier and message encryptor.

Coexistence. mRSA’s built-in revocation approach can co-exist with the tradi-
tional, explicit revocation approaches. For example, a CRL- or a CRT-based scheme
can be used in conjunction with mRSA in order to accommodate existing imple-
mentations that require verifiers (and encryptors) to perform certificate revocation
checks.

CA Communication. in mRSA, a CA remains an off-line entity. mRSA cer-
tificates, along with private half-keys are distributed to the client and SEM-s in
an off-line manner. This follows the common certificate issuance and distribution
paradigm. In fact, in our implementation (Section 6) there is no need for the CA
and the SEM to ever communicate directly.

SEM Communication. mRSA does not require explicit authentication between a
SEM and its clients. A client implicitly authenticates a SEM by verifying its own
signature (or decryption) as described in Sections 3.2 and 3.3. These signature and
encryption verification steps assure the client of the validity of SEM’s replies. Al-
though authentication of a client to a SEM is not required for the security of mRSA
itself, it is needed for protection against denial-of-service attacks on a SEM. This
can be easily accomplished with the authentication protocol described in Section 5.

Semi-trusted SEM. The SEM cannot issue messages on behalf of unrevoked users
nor can it decrypt messages intended for unrevoked users. The worst-case damage
caused by a compromise at the SEM is that users who were previously revoked
can become unrevoked. This is similar to a compromise at a standard Revocation
Authority which would enable the attacker to unrevoke revoked users.

4. ARCHITECTURE

The overall architecture is made up of three components: CA, SEM, and clients. A
typical organizational setup involves one CA, a small set of SEM-s and a multitude
of clients. A CA governs a small number of SEM-s. Each SEM, in turn, serves many
clients. (In Section 5 we show how a single client can be supported by multiple
SEM-s.) The assignment of clients to SEM-s is assumed to be handled off-line by a
security administrator.

The CA component is a simple add-on to the existing CA and is thus still consid-
ered an off-line entity. For each client, the CA component takes care of generating
an RSA public key, the corresponding certificate and a pair of half-keys (one for
the client and one for the SEM) which, when combined, form the RSA private key.
The respective half-keys are then delivered, out-of-band, to the interested parties.

The client component consists of the client library that provides the mRSA sig-
nature and mRSA decryption operations. It also handles the installation of the
client’s credentials at the local host.
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The SEM component is the critical part of the architecture. Since a single
SEM serves many clients, performance, fault-tolerance and physical security are
of paramount concern. The SEM component is basically a daemon process that
processes requests from its constituent clients. For each request, it consults its re-
vocation list and refuses to help sign (or decrypt) for any revoked client. A SEM
can be configured to operate in a stateful or stateless model. The former involves
storing per client state (half-key and certificate) while, in the latter, no per client
state is kept, however, some extra processing is incurred for each client request.
The tradeoff is fairly clear: per client state and fast request handling versus no
state and somewhat slower request handling.

4.1 Details

We now describe the SEM interaction in more detail. A client’s request is initially
handled by the SEM controller which checks the format of the request packet. Next,
the request is passed on to the client manager which performs a revocation check.
If the requesting client is not revoked, the request is handled depending on the SEM
state model. If the SEM is stateless, it expects to find the so-called SEM bundle
in the request. This bundle, as discussed in more detail later, contains the mRSA
half-key, d?¥M | encrypted (for the SEM, using its public key) and signed (by the
CA). The bundle also contains the RSA public key certificate for the requesting
client. Once the bundle is verified, the request is handled by either the mRSAgg, or
MRSAgecrypt component. If the SEM maintains client state, the bundle is expected
only in the initial request. The same process as above is followed, however, the
SEM’s half-key and the client’s certificate are stored locally. In subsequent client
requests, the bundle (if present) is ignored and local state is used instead.

The security administrator communicates with a SEM via the administrative
interface. This interface allows the administrator to manipulate the revocation list
which, in our implementation is a regular X.509 CRL. (The X.509 format is not a
requirement; a CRL can be represented in any signed format as long as it contains
a list of revoked clients’ certificate serial numbers.)

4.2 Implications of SEM Compromise

Suppose that an attacker compromises a SEM and learns d;¢™. This knowlege can
be used to “unrevoke” already revoked clients or block (ignore) future revocations.
In the worst case, an attacker could neutralize SEM’s mandatory involvement and
thus cause the system to degrade to the reliance on normal revocation techniques,
such as CRLs. However, we stress that knowledge of d;* alone does not enable
an attacker to decrypt or sign messages on behalf of a client.

Another interesting side-effect is the observation that there is no need to revoke
all clients public keys whose key shares are exposed due to a compromised SEM. As
long as a given client is not malicious (or compromised) its public key can remain
the same. Specifically, in case of SEM compromise, a CA can simply generate a new
pair of mRSA private half-keys for a given client using the same RSA (e;, d;,n;)
setting, but with a different SEM. This is possible because there are many ways to
randomly “split” a given private exponent d into two parts. More generally, since
each SEM client has a distinct RSA setting, even if a number of malicious clients
collude, there is no danger to other (non-malicious) clients.
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5. EXTENSIONS

We now briefly discuss several simple extensions of mRSA: multi-SEM support,
mRSA blind signatures, identity-based mRSA, and authentication of mRSA re-
quests.

Multi-SEM Support

Since each SEM serves many clients, a SEM failure — whether due to malicious or
accidental causes — prevents all of its clients from decrypting data and generating
signatures. To avoid having a single point of failure, mRSA can be modified to
allow a single client to use multiple SEM-s.

The easiest approach is to physically replicate a SEM. While this helps with as-
suring service availability with respect to accidental (non-malicious) failures, repli-
cation does not protect against hostile attacks.

Another trivial solution is to allow a client to be served by multiple SEM-s, each
with a different mRSA setting. This would require the CA to run the mRSA
key generation algorithm ¢ times (if ¢ is the number of SEM-s) for each client. In
addition to the increased computational load for the CA, this approach would entail
each client having ¢ distinct certificates or a single certificate with ¢ public keys.
The main disadvantage would be for other users (be they SEM clients or not) who
would have to be aware of, and maintain, ¢ public keys for a given SEM client.

Our approach allows a SEM client to have a single public key and a single certifi-
cate while offering the flexibility of obtaining service from any of a set of SEM-s. At
the same time, each SEM maintains a different mRSA half-key for a given client.
Thus, if any number of SEM-s(who support a given client) collude, they are unable
to impersonate that client, i.e., unable to compute the client’s half-key. Multi-SEM
support involves making a slight change to the mRSA key generation algorithm, as
shown in Figure 5.

Algorithm: mRSA.multi-key (executed by CA)

Choose a collision-resistant hash function H : {0,1}* — [1,...,L] where
L > 1024. Let k (even) be the security parameter. Assume client U;
is authorized to obtain service from {SEMg,SEMy,...,SEMy,}.
(1) Generate random k/2-bit primes: p, g
(2) ni < pigi
T *
(4) di < 1/emod ¢(n;)
(5) = & Zn; — {0}
(6) For each j € [0,...,m], construct a server bundle for SEMj:

dfem — dz _H(QZ,SEMJ') mod ¢(n)
(7) SK; «— (ni,x)
(8) PK; «— (nie;)

Fig. 4. mRSA Key Generation for multiple SEM-s

To co-operate with SEM;, the client simply computes H(z, SEM;) as the corre-
sponding mRSA half-key for the decryption or signatures.
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Blind Signatures with mRSA

The concept of blind signatures was introduced by Chaum in [Chaum 1983] and
[Chaum 1985]. They were originally intended for use in e-cash schemes where
a bank (the actual signer) helps a client generate a signature on a message m,
without knowledge of either m or the final signature.

mRSA can be easily extended to produce blind signatures. Suppose U; wants to
generate a blind signature on a message m. U; first masks m by choosing r €r Zj,,
and setting m’ = r¢ EC'(h(m)) mod n;. Then U; sends a signature request on m/’
to SEM and, in the meantime, computes PS, = m'% mod n;,. SEM operates in
the same way as in normal mRSA. When U; receives PSgep,, it simply obtains
PS =r~' % PS, * PSscr, = EC(h(m))% mod n;.

Identity-based mRSA

The concept of identity-based cryptosystems was introduced by Shamir in [Shamir
1985]. In an identity-based cryptosystem, all clients in an organization share a
common cryptographic setting and their public keys are efficiently derived from
their identities using a public algorithm. Therefore, personal public key certificates
are not needed, which greatly simplifies certificate management and reduces reliance
on PKI-s. Several identity-based signature systems have been developed in the past,
e.g., [Guillou and Quisquater 1988]. The first practical identity-based encryption
system was recently proposed by Boneh and Franklin in [Boneh and Franklin 2003].
However, no RSA-compatible identity-based cryptosystem has been developed thus
far.

It turns out that mRSA can be modified to obtain an identity-based RSA variant
(for both encryption and signatures) where clients share a common RSA modulus
n and a client’s public key e; is derived from its identity. We briefly outline it here,
however, a more detailed description can be found in [Ding and Tsudik 2003].

In this variant, only the CA knows the factorization of the common modulus n.
For each client U;, CA computes a unique public key e; from the U;’s identity (e.g.,
its email addresses) using a collision-resistant hash function. Then, a CA computes
the corresponding d; = ei_l mod ¢(n). The private key splitting as well as the
signature and decryption are all the same as in mRSA, except that a CA does not
issue an individual public key certificates to each client. Instead, a CA issues a
site-wide (or organization-wide) attribute certificate, which includes, among other
things, the common modulus n.

It is well-known that sharing a common modulus among multiple clients in plain
RSA is utterly insecure, since knowledge of a single RSA public/private key-pair
can be used to factor the modulus and obtain others’ private keys. However, this
is not an issue in identity-based mRSA since no client possesses an entire private
key. However, collusion of a SEM and a single malicious client will result in a
compromise of all clients of that SEM. Thus, a SEM in identity-based mRSA must
be a fully trusted entity.

Authenticated mRSA

As discussed earlier, authentication of mRSA client requests can provide protec-
tion against denial-of-service (DoS) attacks on a SEM. To address DoS attacks, we
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can modify both mRSA signature and decryption protocols to allow the SEM to
authenticate incoming requests. For example, a client U, can use its half-key d}' to
sign each SEM -bound request message. (This can be done, for example, by having
the client generate a partial signature on each request that is then verified by the
SEM, much in the same manner that a client verifies SEM’s reply in Step 5 of Figure
2.)

Although this method is simple and requires no additional set up costs, it does
not really prevent DoS attacks, since a SEM would need to perform two modular ex-
ponentiations to authenticate each request. A simpler, more cost-effective approach
is to use a MAC or keyed hash, e.g., HMAC [Bellare et al. 1997], to authenticate
client requests. Of course, this would require a shared secret key between a SEM
and each client. A CA could help in the generation and distribution of such shared
secrets at the time of mRSA key generation. Yet another alternative is to rely on
more general encapsulation techniques, such as SSL, to provide a secure channel
for communication between SEM-s and clients.

6. IMPLEMENTATION

We implemented the entire SEM architecture for the purposes of experimentation
and validation. The reference implementation is publicly available at http://
sconce.ics.uci.edu/sucses. Following the SEM architecture described earlier,
the implementation is composed of three parts:

(1) CA and Admin Utilities:

includes certificate issuance and revocation interface.
(2) SEM daemon:

SEM architecture as described in Section 4
(3) Client libraries:

mRSA client functions accessible via an API.

The reference implementation uses the popular OpenSSL library as the low-level
cryptographic platform. OpenSSL incorporates a multitude of cryptographic func-
tions and large-number arithmetic primitives. In addition to being efficient and
available on many common hardware and software platforms, OpenSSL adheres to
the common PKCS standards and is in the public domain.

The SEM daemon and the CA/Admin utilities are implemented on Linux and
Unix while the client libraries are available on both Linux and Windows platforms.

In the initialization phase, CA utilities are used to set up the RSA public key-
pair for each client (client). The set up process follows the description in Section 3.
Once the mRSA parameters are generated, two structures are exported: 1) server or
SEM bundle, which includes the SEM’s half-key d?FM and 2) client bundle, which
includes dY, the new certificate, and the entire server bundle if SEM is a stateless
server.

A SEM bundle is a PKCST7 envelope. It contains d¥FM encrypted with the SEM’s
public key and signed by the CA. The client bundle is in PKCS12 format integrating
the password privacy and public key integrity modes: it is signed by the CA and
encrypted with the client-supplied key which can be derived from a password or a
passphrase. (Note that a client cannot be assumed to have a pre-existing public
key.)
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After issuance, the client bundle is distributed out-of-band to the appropriate
client. Before attempting any mRSA transactions, the client must first decrypt
the bundle with its key and verify the CA’s signature. Finally, the client’s new
certificate, the SEM bundle and half-key are extracted and stored locally.

To sign or decrypt a message, the client starts with sending a mRSA request with
the SEM bundle piggybacked. The SEM processes the request and the bundle con-
tained therein as described in Section 4. (Recall that the SEM bundle is processed
based on the state model of the particular SEM.) If SEM can successfully open its
bundle, it checks the whether the client’s certificate is on the revocation list. If not,
SEM follows the protocol and returns a corresponding reply to the client.

6.1 Email client plug-in

To further demonstrate the ease of use and practicality of the SEM architecture,
we implemented plug-ins for both Eudora email reader and Outlook 2000 email
client. When sending signed email, the plug-in reads the client bundle described
in the previous section. It obtains the SEM address from the bundle and then
communicates with the SEM to sign the email. The resulting signed email can be
verified using any S/MIME capable email client such as Microsoft Outlook. In other
words, the email recipient is oblivious to the fact that a SEM is used to control
the sender’s signing capabilities. When reading an encrypted email, the plug-in
automatically loads the client bundle and decrypts the message by cooperating
with SEM. For the sender, all S/MIME capable email composers can encrypt email
for mRSA clients without any changes.

6.2 mRSA Email Proxy

An alternative way to use mRSA is through an mRSA-enabled email proxy. A
proxy resides on the client’s local host, runs in the background (as a daemon on
Unix or a TSR program on Windows) and relays email messages between the local
host and a remote SMTP server. An outbound email message, if requested, can be
processed by the mRSA proxy using the same mRSA protocol as in the plug-in. For
inbound email, the proxy can decrypt or verify signatures, if necessary. The main
benefit of using a proxy is that it provides a single unified interface to the end-client
and all email applications. This obviates the need to customize or modify email
clients and offers a greater degree of transparency as well as ease of installation and
configuration.

7. EXPERIMENTAL RESULTS

We conducted a number of experiments in order to evaluate the efficiency of the
SEM architecture and our implementation.

We ran the SEM daemon on a Linux PC equipped with an 800 MHz Pentium ITI
processor. Two different clients were used. The fast client was on another Linux
PC with a 930 MHz Pentium III. Both SEM and fast client PC-s had 256 M of RAM.
The slow client was on a Linux PC with 466 MHz Pentium IT and 128M of RAM.
Although an 800 MHz processor is not exactly state-of-the-art, we opted to err on
the side of safety and assume a relatively conservative (i.e., slow) SEM platform. In
practice, a SEM might reside on much faster hardware and is likely to be assisted
by an RSA hardware acceleration card.
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Keysize | Data Size | Comm. latency
(bits) (bytes) (ms)
512 102 4.0
1024 167 4.5
2048 296 5.9

Table I.  Communication latency

Each experiment involved one thousand iterations. All reported timings are in
milliseconds (rounded to the nearest 0.1 ms). The SEM and client PCs were located
in different sites interconnected by a high-speed regional network. All protocol
messages are transmitted over UDP.

Client RSA key (modulus) sizes were varied among 512, 1024 and 2048 bits.
(Though it is clear that 512 is not a realistic RSA key size any longer.) The
timings are only for the mRSA sign operation since mRSA decrypt is operationally
almost identical.

7.1 Communication Overhead

In order to gain precise understanding of our results, we first provide separate mea-
surements for communication latency in mRSA. Recall that both mRSA operations
involve a request from a client followed by a reply from a SEM. As mentioned above,
the test PCs were connected by a high-speed regional network. We measured com-
munication latency by varying the key size which directly influences message sizes.
The results are shown in Table I (message sizes are in bytes). Latency is calculated
as the round-trip delay between the client and the SEM. The numbers are identical
for both client types.

7.2 Standard RSA

As a point of comparison, we initially timed the standard RSA sign operation in
OpenSSL (Version 0.9.6) with three different key sizes on each of our three test PCs.
The results are shown in Tables II and III. Each timing includes a message hash
computation followed by an modular exponentiation. Table II reflects optimized
RSA computation where the Chinese Remainder Theorem (CRT) is used to speed
up exponentiation (essentially exponentiations are done modulo the prime factors
rather than modulo N). Table III reflects unoptimized RSA computation without
the benefit of the CRT. Taking advantage of the CRT requires knowledge of the
factors (p and ¢q) of the modulus n. Recall that, in mRSA, neither the SEM nor the
client know the factorization of the modulus, hence, with regard to its computation
cost, mRSA is more akin to unoptimized RSA.

As evident from the two tables, the optimized RSA performs a factor of 3 to 3.5
faster for the 1024~ and 2048-bit moduli than the unoptimized version. For 512-bit
keys, the difference is slightly less marked.

7.3 mRSA Measurements

The mRSA results are obtained by measuring the time starting with the message
hash computation by the client (client) and ending with the verification of the
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Key-size | 466 MHz PII | 800 MHz PIIT | 930 MHz PIII
(bits) (slow client) (SEM) (fast client)
512 2.9 1.4 14
1024 14.3 7.7 7.2
2048 85.7 494 42.8
Table II. Standard RSA (with CRT) signature timings in ms.
Key-size | 466 MHz PII | 800 MHz PIIT | 930 MHz PIII
(bits) (slow client) (SEM) (fast client)
512 6.9 4.0 3.4
1024 43.1 24.8 21.2
2048 297.7 169.2 144.7
Table ITI. Standard RSA (without CRT) signature timings in ms.
Key-size | 466 MHz PII | 930 MHz PIII
(bits) (slow client) (fast client)
512 8.0 9.9
1024 45.6 31.2
2048 335.6 178.3

Table IV. mRSA signature timings in ms.

signature by the client. The measurements are illustrated in Table IV.

It comes as no surprise that the numbers for the slow client in Table IV are very
close to the unoptimized RSA measurements in Table III. This is because the time
for an mRSA operation is determined solely by the client for 1024- and 2048- bit
keys. With a 512-bit key, the slow client is fast enough to compute its P.S, in
6.9ms. This is still under 8.0ms (the sum of 4ms round-trip delay and 4ms RSA
operation at the SEM).

The situation is very different with a fast client. Here, for all key sizes, the timing
is determined by the sum of the round-trip client-SEM packet delay and the service
time at the SEM. For instance, 178.3ms (clocked for 2048-bit keys) is very close to
174.7ms which is the sum of 5.5ms communication delay and 169.2ms unoptimized
RSA operation at the SEM.

All of the above measurements were taken with the SEM operating in a stateful
mode. In a stateless mode, SEM incurs further overhead due to the processing
of the SEM bundle for each incoming request. This includes decryption of the
bundle and verification of the CA’s signature found inside. To get an idea of the
mRSA overhead with a stateless SEM, we conclude the experiments with Table V
showing the bundle processing overhead. Only 1024- and 2048-bit SEM key size
was considered. (512-bit keys are certainly inappropriate for a SEM.) The CA key
size was constant at 1024 bits.

34



SEM key size | Bundle overhead
1024 8.1
2048 50.3

Table V. Bundle overhead in mRSA with a SEM in a stateless mode (in millisec-
onds).

8. RELATED WORK

Our system is constructed on top of a 2-out-of-2 threshold RSA algorithm, for
the purpose of instant certificate revocation. In the following, we compare it with
others” work with related functionality as well as those with similar cryptographic
setting.

8.1 Current Revocation Techniques

Certificate revocation is a well-recognized problem in all current PKI-s. Several
proposals attempt to address this problem. We briefly review these proposals and
compare them to the SEM architecture. For each, we describe how it applies to sig-
natures and encryption. We refer to the entity validating and revoking certificates
as the Validation Authority (VA). Typically, a VA and a CA are one and the same.
However, in some cases (such as OCSP) these are separate entities.

CRLs and A-CRLs: these are the most common ways to handle certificate revo-
cation. The Validation Authority (VA) periodically posts a signed list (or another
data structure) containing all revoked certificates. Such lists are placed on desig-
nated servers, called CRL Distribution Points. Since a list can get quite long, a VA
may post a signed A-CRL which only contains the list of certificates revoked since
the last CRL was issued. In the context of encrypted email, at the time email is
sent, the sender checks if the receiver’s certificate is included in the latest CRL. To
verify a signature on a signed email message, the verifier first checks if (at present
time) the signer’s certificate is included in the latest CRL.

OCSP: the Online Certificate Status Protocol (OCSP) [Myers et al. 1999] avoids
the generation and distribution of potentially long CRLs and provides more timely
revocation information. To validate a certificate in OCSP, the client sends a cer-
tificate status request to the VA. The VA sends back a signed response indicating
the status (revoked, valid, unknown) of the specified certificate.

We remark that the current OCSP protocol prevents one from implementing bind-
ing signature semantics: it is impossible to ask an OCSP responder whether a
certificate was valid at some time in the past. Hopefully, this will be corrected
in future versions of OCSP. One could potentially abuse the OCSP protocol and
provide binding semantics as follows. To sign a message, the signer generates the
signature, and also sends an OCSP query to the VA. The VA responds with a signed
message saying that the certificate is currently valid. The signer appends both the
signature and the response from the VA to the message. To verify the signature,
the verifier checks the VA’s signature on the validation response. The response
from the VA provides a proof that the signer’s certificate is currently valid. This
method reduces the load on the VA: it is not necessary to contact the VA every
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time a signature is verified. Unfortunately, there is currently no infrastructure to
support this mechanism.

Certificate Revocation Trees: Kocher suggested an improvement over OCSP [Kocher
1998]. Since the VA is a global service it must be sufficiently replicated in order
to handle the load of all the validation queries. This means the VA’s signature key
must be replicated across many servers which is either insecure or expensive (VA
servers typically use tamper-resistance to protect the VA’s signing key). Kocher’s
idea is to have a single highly secure VA periodically post a signed CRL-like data
structure to many insecure VA servers. Users then query these insecure VA servers.
The data structure proposed by Kocher is a hash tree where the leaves are the
currently revoked certificates sorted by serial number (lowest serial number is the
left most leaf and the highest serial number is the right most leaf). The root of the
hash tree is signed by the VA. This hash tree data structure is called a Certificate
Revocation Tree (CRT).

When a client wishes to validate a certificate CERT she issues a query to the closest
VA server. Any insecure VA can produce a convincing proof that CERT is (or is
not) on the CRT. If n certificates are currently revoked, the length of the proof is
O(logn). In contrast, the length of the validity proof in OCSP is O(1).

Skip-lists and 2-3 trees: One problem with CRT-s is that, each time a certificate
is revoked, the whole CRT must be recomputed and distributed in its entirety to all
VA servers. A data structure allowing for dynamic updates would solve this problem
since a secure VA would only need to send small updates to the data structure along
with a signature on the new root of the structure. Both 2-3 trees proposed by Naor
and Nissim [Naor and Nissim 2000] and skip-lists proposed by Goodrich [Goodrich
et al. 2001] are natural and efficient for this purpose. Additional data structures
were proposed in [Aiello et al. 1998]. When a total of n certificates are already
revoked and k new certificates must be revoked during the current time period, the
size of the update message to the VA servers is O(klogn) (as opposed to O(n) with
CRT’s). The proof of certificate’s validity is O(logn), same as with CRTs.

A note on timestamping. Binding signature semantics (Section 2.2) for signature
verification states that a signature is considered valid if the key used to generate
the signature was valid at the time of signature generation. Consequently, a verifier
must establish exactly when a signature was generated. Hence, when signing a
message, the signer must interact with a trusted timestamping service to obtain a
trusted timestamp and a signature over the client’s (signed) message. This proves
to any verifier that a signature was generated at a specific time. All the techniques
discussed above require a signature to contain a trusted timestamp indicating when
a signature was issued. There is no need for a trusted time service to implement
binding signature semantics with the SEM architecture. This is because a SEM
can be used to provide a secure time-stamping service as part of its mandatory
involvement in each client’s signature.

8.2 Two-party RSA

Several other research results developed schemes similar to the SEM architecture
although in different security domains. Among them, Yaksha [Ganesan 1996] and
S-RSA [MacKenzie and Reiter 2001b; 2001a] are the schemes conceptually closest
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to ours. Both Yaksha and S-RSA involve 2-party RSA function sharing where
clients do not possess complete RSA private keys and rely on an on-line server to
perform certain private key operations.

The Yaksha system is a reusable security infrastructure which includes key ex-
change and key escrow. It allows a legitimate authority to recover clients’ short-term
session keys without knowing their long-term private keys. The client and the Yak-
sha server separately hold two shares such that their product forms a complete RSA
private key for the client. When a Yaksha server receives a request for generating
a session key, it chooses the key at random, encrypts it with the client’s public key
and decrypts it partially with the corresponding key share so that the result can
be decrypted by the client using the other share.

Compared with our scheme, Yaksha is more expensive. A Yaksha client is unable
to perform its local computation before it receives the server’s result, whereas, the
client’s and SEM’s computations in our scheme are executed concurrently. Also, a
Yaksha server is a fully trusted entity and its compromise completely breaks the
system security. In contrast, a SEM is only partially trusted; its compromise can
only impair the intended service. Furthermore, a Yaksha server is a single point of
failure and not scalable in that it serves for all users in the system . Our scheme
allows multiple SEM-s; each serving (possibly overlapping) subsets of clients.

Another related result, S-RSA, is due to MacKenzie and Reiter [MacKenzie and
Reiter 2001b; 2001a]. It aims to safeguard password-protected private keys on
a captured networked device from offline dictionary attacks. In this scheme, the
client’s share is derived from its password; the server’s share is contained in a token
encrypted with the server’s public key and stored in the device. The sum of the
two shares forms the client’s private RSA key. When needed, the encrypted token
is sent to the server which extracts the key share and helps the client to issue
a signature. The client is also able to notify the server to disable its key share
by revealing certain secret information. Although the underlying cryptographic
algorithms are similar to ours, the goals are fundamentally different: we focus on
fine-grained control and fast revocation while S-RSA aims to protect networked
devices.

Many other two-party schemes have been proposed in the literature. For example,
Boneh and Franklin [Boneh and Franklin 2001] showed how to share the RSA key
generation function between two parties. Nicolosi, et al. [Nicolosi et al. 2003]
designed a proactive two-party Schnorr signature scheme. MacKenzie and Reiter
[MacKenzie and Reiter 2001¢] developed a provable secure two-party DSA signature
scheme. However, none of these schemes are used in the content of revocation of
security privileges.

9. SUMMARY

We described a new approach to certificate revocation and fine-grained control over
security capabilities. Rather than revoking the client’s certificate our approach
revokes the client’s ability to perform cryptographic operations such as signature
generation and decryption. This approach has several advantages over traditional
certificate revocation techniques: (1) revocation is fast — when its certificate is re-
voked, the client can no longer decrypt or sign messages, (2) with binding signature
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semantics, there is no need to validate the signer’s certificate as part of signature
verification, and (3) our revocation technique is transparent to the peers since it
uses standard RSA signature and encryption formats.

We implemented the SEM architecture for experimentation purposes. Our mea-
surements show that signature and decryption times are not significantly higher
from the client’s perspective. Therefore, we believe the SEM architecture is ap-
propriate for small- to medium-sized organizations where tight control of security
capabilities is desired. The SEM architecture is clearly not appropriate for the
global Internet or for educational campus-like environments.
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Abstract. ldentity-based public key encryption facilitates easy introduction of
public key cryptography by allowing an entity’s public key to be derived from
an arbitrary identification value, such as name or email address. The main prac-
tical benefit of identity-based cryptography is in greatly reducing the need for,
and reliance on, public key certificates. Although some interesting identity-based
techniques have been developed in the past, none are compatible with popular
public key encryption algorithms (such as El Gamal and RSA). This limits the
utility of identity-based cryptography as a transitional step to full-blown pub-
lic key cryptography. Furthermore, it is fundamentally difficult to reconcile fine-
grained revocation with identity-based cryptography.

Mediated RSA (mRSA) [9] is a simple and practical method of splitting a RSA
private key between the user and a Security Mediator (SEM). Neither the user
nor the SEM can cheat one another since each cryptographic operation (signature
or decryption) involves both parties. mRSA allows fast and fine-grained control
of users’ security privileges. However, mRSA still relies on conventional public
key certificates to store and communicate public keys. In this paper, we present
IB-mRSA, a simple variant of mRSA that combines identity-based and mediated
cryptography. Under the random oracle model, IB-mRSA with OAEP[7] is shown
as secure (against adaptive chosen ciphertext attack) as standard RSA with OAEP.
Furthermore, IB-mRSA is simple, practical, and compatible with current public
key infrastructures.

Keywords: Identity-based Encryption, Mediated RSA, Revocation

1 Introduction

In a typical public key infrastructure (PKI) setting, a user’s public key is explicitly en-
coded in a public key certificate which is, essentially, a binding between the certificate
holder’s identity and the claimed public key. This common model requires universal
trust in certificate issuers (Certification Authorities or CAs). It has some well-known
and bothersome side-effects such as the need for cross-domain trust and certificate re-
vocation. The main problem, however, is the basic assumption that all certificates are
public, ubiquitous and, hence, readily available to anyone. We observe that this assump-
tion is not always realistic, especially, in wireless (or any fault-prone) networks where
connectivity is sporadic.
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In contrast, identity-based cryptography changes the nature of obtaining public keys
by constructing a one-to-one mapping between identities and public keys. Identity-
based cryptography thus greatly reduces the need for, and reliance on, public key cer-
tificates and certification authorities. In general, identity-based encryption and identity-
based signatures are useful cryptographic tools that facilitate easy introduction of, and/or
conversion to, public key cryptography by allowing a public key to be derived from ar-
bitrary identification values such as email addresses or phone numbers. At the same
time, identity-based methods greatly simplify key management since they reduce both:
the need for, and, the number of, public key certificates.

The concept of identity-based public encryption was first proposed by Shamir[20] in
1984. For the following 16 years the progress in this area has been rather slow. However,
recently, Boneh and Franklin developed an elegant Identity-Based Encryption system
(BF-1BE) based on Weil Pairing on elliptic curves [10]. BF-IBE represents a significant
advance in cryptography.

Nevertheless, an identity-based RSA variant has remained elusive for the simple
reason that an RSA modulus n (a product of two large primes) can not be safely
shared among multiple users. Another notable drawback of current identity-based cryp-
tographic methods is lack of support for fine-grained revocation. Revocation is typi-
cally done via Certificate Revocation Lists (CRLs) or similar structures. However, IBE
aims to simplify certificate management by deriving public keys from identities, which
makes it difficult to control users’ security privileges.

In this paper, we propose a simple identity-based cryptosystem developed atop some
Mediated RSA (MRSA) by Boneh, et al. [9]. mRSA is a practical and RSA-compatible
method of splitting an RSA private key between the user and the security mediator,
called a SEM. Neither the user nor the SEM knows the factorization of the RSA modu-
lus and neither can decrypt/sign message without the other’s help. By virtue of requiring
the user to contact its SEM for each decryption and/or signature operation, MRSA pro-
vides fast and fine-grained revocation of users’ security privileges.

Built on top of mRSA, IB-mRSA blends the features of identity-based and mediated
cryptography and also offers some practical benefits.* Like mRSA, it is fully compatible
with plain RSA. With the exception of the identity-to-public-key mapping, it requires no
special software for communicating parties. IB-mRSA also allows optional public key
certificates which facilitates easy transition to a conventional PKI. More generally, IB-
mMRSA can be viewed as a simple and practical technique inter-operable with common
modern PKIls. At the same time, IB-mRSA offers security comparable to that of RSA,
provided that a SEM is not compromised. Specifically, it can be shown that, in the
random oracle model, IB-mRSA with OAEP[7] is as secure — against adaptive chosen
ciphertext attacks — as RSA with OAEP.

The rest of the paper is organized as follows. The next section gives a detailed
description of IB-mRSA. The security analysis is presented in Section 3 and the per-
formance analysis — in Section 4. In Section 5, IB-mRSA is compared with Boneh-
Franklin’s IBE. Finally, a brief description of the implementation is presented in the
last section. Some further security details can be found in the Appendix.

L A very sketchy version of IB-mRSA was first presented in [8].
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2 ldentity-Based mRSA

The main feature of identity-based encryption is the sender’s ability to encrypt messages
using the public key derived from the receiver’s identity and other public information.
The identity can be the receiver’s email address, user id or any value unique to the
receiver; essentially, an arbitrary string. To compute the encryption key, an efficient
(and public) mapping function G must be set beforehand. This function must be a
one-to-one mapping from identity strings to public keys.

The basic idea behind identity-based mRSA is the use of a single common RSA
modulus n for all users within a system (or domain). This modulus is public and con-
tained in a system-wide certificate issued, as usual, by some Certificate Authority (CA).
To encrypt a message for a certain recipient (Bob), the sender (Alice) first computes
epob = KG(IDpep) Where 1D g, is the recipient’s identity value, such as Bob’s email
address. Thereafter, the pair (e, n) is treated as a plain RSA public key and normal
RSA encryption is performed. On Bob’s side, the decryption process is identical to that
of mRSA.

We stress that using the same modulus by multiple users in a normal RSA setting
is utterly insecure. It is subject to a trivial attack whereby anyone — utilizing one’s
knowledge of a single key-pair — can simply factor the modulus and compute the other
user’s private key. However, in the present context, we make an important assumption
that: Throughout the lifetime of the system, the adversary is unable to compromise a
SEM.

Obviously, without this assumption, IB-mRSA would offer no security whatsoever:
a single SEM break-in coupled with the compromise of just one user’s key share would
result in the compromise of all users’ (for that SEM) private keys. The IB-mRSA as-
sumption is slightly stronger than its mRSA counterpart. Recall that, in mRSA, each
user has a different RSA setting, i.e., a unique modulus. Therefore, to compromise a
given user an adversary has to break into both the user and its SEM.

We now turn to the detailed description of the IB-mRSA scheme.

2.1 System Setting and User Key Generation

In the following, we use email addresses as unique identifiers of the public key owners
in the system. However, as mentioned above, other identity types can be used just as
well, e.g., Unix UIDs, HTTP addresses, physical addresses or even phone humbers. We
use the notation I D 4;;.. to denote the user’s (Alice) email address that will be used to
derive the public exponent.

In the initialization phase, a trusted party (CA) sets up the RSA modulus for all
users in the same system (organization or domain). First, CA chooses, at random, two
large primes p’ and ¢’ such that p = 2p’ + 1 and ¢ = 2¢’ + 1 are also primes, and finally
sets n = pg. We note that, since n is a product of two strong primes, a randomly chosen
odd number in Z,, has negligible probability of not being relatively prime to ¢(n). (See
Section 3 for further discussion.) Hence, the mapping function G can be quite trivial.
(Our current implementation uses the popular M D5 hash function.)

The public exponent e 4;;. is constructed as the output of G (ID slice) repre-
sented as a binary string of the same length as the modulus, with the least significant bit
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set. This ensures that e 4;;.. is odd and, with overwhelming probability, relatively prime
to ¢(n). The complete IB-mRSA key generation proceeds as in Figure 1.

Al gorithm | B-nRSA. key (executed by CA)
Let k (even) be the security paraneter

1. Generate random k/2-bit primes: p’, ¢’ s.t. p = 2p’ + 1,9 = 2¢’ + 1 are also
prime.
2. n — pg,e €ER Ly, d — e~ mod ¢(n)
3. For each user (Alice):
@ s — kKGO -1
(b) carice — 0°[IKG(IDA)|I1
(C) dAlz'ce — 1/€Alice mod ¢(n)
(d) dAlice,u L Zn - {0}
(e) dAlice sem (d _ dAlice u) mod ¢(n)

Fig. 1. IB-mRSA: User Key Generation

A domain- or system-wide certificate (Cert,,q) is issued by the CA after comple-
tion of the key generation algorithm. This certificate contains almost all the usual fields
normally found in RSA public key certificates with few exceptions, such as no real
public key value is given. In particular, it mainly contains the common modulus » and
(if applicable) the common part of the email address for all users, such as the domain
name.

For the sake of compatibility with other (not identity-based) RSA implementations
— including plain RSA and mRSA - the CA may, upon request, issue an individual
certificate to a user. In most cases, however, an individual user certificate would not
be needed, since not having such certificates is exactly the purpose of identity-based
cryptography.

2.2 IB-mRSA Encryption

To encrypt a message, the sender needs only the recipient’s email address and the do-
main certificate. The encryption algorithm is shown in Figure 2.

Al gorithm | B-nRSA. encr

Retrieve n, k and G algorithm identifier from the domain certificate;

s «— k—1KG()| -1

e « 0°|KG(IDA)|I1

Encrypt input message m with (e, n) using standard RSA/OAEP, as specified
in PKCS#1v2.1[3]

Ao

Fig. 2. IB-mRSA: Encryption
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Since the receiver’s public key is derived from the receiver’s unique identifier, the
sender does not need a public key certificate to ensure that the intended receiver is the
correct public key holder. Furthermore, fast revocation provided by mRSA obviates
the need for the sender to perform any revocation checks. The decryption process is
essentially the same as in mRSA. If a certain user needs to be revoked, the domain
security administrator merely notifies the appropriate SEM and the revoked user is
unable to decrypt any further messages.

2.3 IB-mRSA Decryption

IB-mRSA decryption is identical to that of mRSA. To make this paper self-contained,
we borrow (from [9]) the protocol description in Figure 3. For a detailed description
and security analysis of additive mRSA, we refer the reader to [9].?

Prot ocol |B-nRSA. decr (executed by User and SEM

1. USER: m’ « encrypted message
2. USER: send m' to SEM
3. In parallel:
3.1 SEM:
(@) If USER revoked return (ERROR)
(b) PDsorn «— m'%em mod n
(c) Send PDgsem to USER
3.2 USER:
(@) PD, «— m'% modn
4. USER: M «— (PDgsem * PDy) mod n
USER: m « OAEP Decoding of M
6. USER: If succeed, return (m)

o

Fig. 3. IB-mRSA: Decryption

3 Security of Identity-based mRSA

We now examine the security of IB-mRSA/OAEP in a setting with n users. All users
share a common RSA modulus N and each user (U;) is associated with a unique identity
1D;, which is mapped into an RSA public exponent e; via a mapping function KG.

3.1 Security Analysis

In the following, we argue that if ICG is an appropriate hash function, IB-mRSA/OAEP
is semantically secure against adaptive chosen ciphertext attacks (CCA-2) in the ran-
dom oracle model. We use the term indistinguishability which is a notion equivalent to
semantic security. (See [6] for the relevant discussion.)

2 There is also a very similar multiplicative mRSA (*mRSA) first proposed by Ganesan [13].
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Our analysis is mainly derived from the results in [5], ([4] has similar results) where
it was shown that a public-key encryption system in a multi-user setting is semantically
secure against certain types of attacks if and only if the same system in a single-user
setting is semantically secure against the same attack types.

IB-mRSA/OAEP is obviously an encryption setting with many users, although they
do not physically possess their own private keys. To prove semantic security, we begin
by asserting that IB-mRSA in single-user mode is equivalent to the standard RSA/OAEP,
which is proven secure against CCA-2 under the random oracle [12]. Next, we apply the
theorems in [5] with the condition that all users are honest. To remove this condition,
we analyze the distribution of views of the system from users and outside adversaries.
Furthermore we introduce an additional requirement for the key generation function
(division-intractability) so that we can neglect the possibility of an attack from legiti-
mate (inside) users, which is a problem unique to our setting. In the end, we argue for
semantic security of IB-mRSA/OAEP.

We use Succ!B(t, q4) to denote the maximum advantage of all adversary algorithms
in polynomial time ¢, attacking 1B-mRSA/OAEP with one user, SucclB(t, qa, g.) for
the setting with n users, and Succ?(t, ¢q) for RSA/OAEP. In the above, ¢4(g.) denote
the maximum number of decryption (encryption) queries allowed for each public key.
Throughout the analysis, we consider semantic security against CCA-2 under the ran-
dom oracle assumption. To conserve space, we omit mentioning them in the following
discussion.

We begin with the following lemma.

Lemma 1. IB-mRSA/OAEP system in a single-user setting is polynomially as secure
as standard RSA/OAEP encryption, i.e.,

SucctP(t,qq) = Succt(t', qa)
where c isconstant value, ' = ¢ + c.

The proof is in Appendix A.2. Basically, if there exists an algorithm breaking the se-
curity of IB-mRSA/OAEP in a single-user mode, we can build upon it an algorithm
breaking standard RSA/OAEP with the same success probability and constant extra
overhead. Of course, it is easy to see that breaking RSA/OAEP implies breaking IB-
mRSA. Thus, we claim that they are equally secure.

For the multi-user setting, we cannot claim that IB-mRSA with n users is seman-
tically secure by directly applying the security reduction theorem in [5]. The reason is
that our system is not a typical case referred in [5]. Sharing a common RSA modulus
among many users results in their respective trapdoors not being independent; conse-
quently, there could be attacks among the users. Furthermore, users in IB-mRSA may
have the incentive not only to attack other users, but also to attempt to break the under-
lying protocol so that they can bypass the mandatory security control of the SEM.

However, assuming for the moment, that all users are honest, we can obtain the
following lemma derived from [5].

Lemma 2. IB-mRSA/OAEP systemwith n usersis semantically secureif all n are hon-
est. More precisely,
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SucchP (tn, qa, ge) < genSucc® (t1, qa)
wheret; =t, + O(log(Qen))

When all users are honest, there are clearly no attacks. Thus, IB-mRSA with multi-user
can be considered as an example of encryption system in [5] where each user has an in-
dependent trapdoor. We adapt the original proof in [5] in order to claim security against
CCA-2 since no user actually knows its own trapdoor in IB-mRSA. See Appendix A.3
for details.

Unfortunately, in a real application, all users cannot be assumed to be trusted. To
remove this condition in Lemma 2, we have to examine both the information an inside
user can observe and the operations an inside user can perform.

For a given entity (user or set of users) we use an informal term “system view” to
refer to the distribution of all inputs, outputs, local state information as well as scripts
of interactions with decryption oracles, encryption oracles, and the SEM. The system
view for an outside attacker is denoted as:

Vl = P'I’{N, (e()v'"en)7F07FE7FD7FSEIW}
while the system view for a set of users is:
‘/2 = PT’{N, (607 .. aen)a {dui};F07FE7FD7FSEMaqu,n}

where {d,,} is the set of user key-shares; I'o, I'g, I'p are three scripts recording all
queries/answers to the random oracle, encryption oracles and decryption oracles, re-
spectively; I's gz is the script recording all requests/replies between all users and the
SEM; Iy, . is the script recording all n users’ computation on ciphertexts with their
own secret key-share d,,,. We claim in Lemma 3, that being an IB-mRSA user does not
afford one extra useful information as compared to an outside adversary.

Lemma 3. Under the adaptive chosen ciphertext attack, the system view of the outside
adversary (1), is polynomially indistinguishable from the combined system view (V53)
of a set of maliciousinsiders, in the random oracle model.

Proof. See Appendix A.4 for details. [J

Thus far, we have shown that insider adversaries do not gain advantages over out-
siders in terms of obtaining extra information. However, we also need to consider the
privileged operations that an insider can make. In IB-mRSA, each user is allowed to
send legitimate decryption queries to its SEM. In conventional proofs, the adversary is
not allowed to query its oracle for the challenge ciphertext. However in our case, an in-
side adversary can manipulate a challenge ciphertext (intended for decryption with d;)
into another ciphertext that can be decrypted with its own key d; and legally decrypt it
with the aid of the SEM.2

3 A simple example is as follows. Suppose e; = 3 * e;. Then, given ¢ = m® mod n, User U;
can compute ¢’ = ¢® = m* mod n, which can be decrypted by U; with the help from its
SEM. The notion of non-malleability does not capture this attack since it is defined under a
single fixed private/public key pair.
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We now have to consider the probability of such attacks in our setting. More gener-
ally, let ey, . .., e,, be the set of public keys of v malicious users, and E, = Hai €a,;-
They may attempt to use some function f, which takes a challenge ¢ = m® mod n as
input and outputs ciphertext ¢/ = m®». We offer the following lemma to address the
conditions for the existence of such f.

Lemma 4. Given two RSA exponents z, y and modulus n, let f be a polynomial time
complexity function st. f(m?®) = m¥ mod n. Such f existsiff z|y.

Proof. See Appendix A.5 for details. [J

According to Lemma 4, we require negligible probability of obtaining a user’s pub-
lic key which is a factor of the product of a set of others. A similar requirement ap-
pears in a signature scheme by Gennaro et al. in [14]. They introduce the notion of
division intractability for a hash function. Informally, a hash function H is Division
intractable if it is infeasible to find distinct (X4, ..., X,,,Y") in its domain, such that
H(Y)|IL;(H(X;)). Denoting Pri(H) as the probability that / fails to hold this
property, we have the following proposition regarding the security of IB-mRSA in a
multi-user setting.

Proposition 1. IB-mRSA/OAEP encryption offers equivalent semantic security to
RSA/OAEP against adaptive chosen ciphertext attacks in the random oracle mode, if
the key generation function is division intractable.

In summary, Lemma 3 and Lemma 4 enable us to remove the condition of Lemma 2
where all users are assumed to be honest, by requiring the key generation function to
be division intractable. Thus, we can reduce the security of IB-mRSA/OAEP in multi-
user setting into single-user, which is as secure as standard RSA/OAEP according to
Lemma 1.

3.2 The Public Key Mapping Function

The key generation function G in IB-mRSA is a hash function H. To ensure the secu-
rity of the scheme, H must satisfy the following requirements.

AVAILABILITY OF PuBLIc KEYs: The output of H should have an overwhelming
probability of being relatively prime to ¢(n). Obviously, for the inverse (private key) to
exist, a public exponent can not have common factors with ¢(n).

Note that in Section 2 the RSA modulus n is set to n = p * ¢ and p, ¢ are chosen
as strong primes p = 2p’ + 1, ¢ = 2¢' + 1 where both p’ and ¢’ are also large primes.
Considering ¢(n) = 22p’q’ with only three factors 2, p, g, the probability of the output
from H being co-prime to ¢(n) is overwhelming on the condition that the output is an
odd number, because finding an odder number not co-prime to 4p’q’ is equivalent to
find p’ or ¢’ and consequently factoring n.

CoLLISION RESISTANCE: H should be a collision-resistant function, i.e., given
any two distinct inputs 7.D;, I Do, the probability of H(ID,) = H(ID-) should be
negligible. In other words, no two users in the domain can share the same public expo-
nent.
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DivisSION RESISTANCE: As discussed in Section 3.1, division intractability of
H is essential to the security of IB-mRSA. Gennaro et al. analyzed the probability of
division for hash functions in [14].

Moreover, Coron and Naccache showed in [11] that the number of necessary hash-
value to find a division relation among a hash function’s outputs is sub-exponential to
its digest size k: exp(v/21og 2/2 + o(1)\/klog k).

They suggested using 1024-bit hash functions to get a security level equivalent to
1024-bits RSA. However, such a strong hash function is not needed in our case. As
a point of comparison, the GHR signature scheme [14] needs a division-intractable
hash function to compute message digests, where an adaptive adversary can select any
number of inputs to the underlying hash function. IB-mRSA needs a hash function to
compute digests from users’ identities. In any domain, the number of allowed identities
is certainly much fewer compared to the number of messages in [14].

digest size in bits | log, complexity (in # of operations)
128 36
160 39
192 42
1024 86

Table 1. Estimated complexity of the attack for variable digest sizes.

To help select the best hash size for our purposes, we quote from the experiments
by Coron and Naccache [11] in Table 1. Taking the first line as an example, an inter-
pretation of the data is that, among at least 22¢ hash digests, the probability of finding
one hash value dividing another is non-negligible. In IB-mRSA setting, the typical per-
sonnel of an organization is on the order of 29 ~ 217, Consequently, the possible
number of operations is far less than 236, Hence, we can safely use MD5 or SHA-1 as
the mapping function (H).

3.3 SEM Security

Suppose that the attacker is able to compromise the SEM and expose the secret key
dsem, NOwever, without collusion with any user. This only enables the attacker to “un-
revoke” previously revoked, or block possible future revocation of currently valid, cer-
tificates. The knowledge of d,.,, does not enable the attacker to decrypt or sign mes-
sages on behalf of the users. The reason is obvious: note that Alice never sends her
partial results to her SEM. Thus, the attacker’s view of Alice can be simulated in the
normal RSA setting, where the attacker just picks a random number as d.,,, and make
computations on the ciphertext, messages to sign and signatures generated by Alice.

3.4 Security of Common Modulus

As mentioned earlier, using a common RSA modulus is clearly unacceptable in plain
RSA setting. In the mediated RSA architecture, sharing a modulus is feasible since no
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party knows a complete private/public key-pair. In fact, no coalition of users is able to
compute a public/private key-pair. The only way to “break” the system appears to be by
subverting a SEM and colluding with a user. Thus, in the context of IB-mRSA we need
to assume that a SEM is a fully trusted party, as opposed to semi-trusted in mRSA [9].

4 Performance Analysis

When plain RSA is used for encryption, the public encryption exponent e is typically
a small integer with only a few 1-bits. One example is the popular OpenSSL toolkit
[17] which uses 65, 537 as the default public key value for RSA certificates. Encryption
with such small exponents can be accelerated with specialized algorithms for modular
exponentiation. However, in IB-mRSA setting, there is no such luxury of choosing spe-
cial exponents and a typical public exponent is a relatively large integer with (on the
average) half of the bits set to 1.

Keys RSA Modulus 1Kb | RSA Modulus 2Kb [RSA Modulus 4Kb
65, 537 2ms 4 ms 12 ms
128-hit key 7ms 20 ms 69 ms
160-hit key 8 ms 25 ms 88 ms

Table 2. IB-mRSA Encryption: Performance Comparison of Different Encryption Keys.

We ran some simple tests to assess the cost of IB-mRSA encryption for public
keys derived from email addresses. The encryption was tested using OpenSSL on an
800MHz P11 workstation. In the tests, we used: 1) “default” encryption exponent 65, 537
and 2) two other exponents of length 128-bit and 160-bit. For each key, we randomly
set half of the bits. The results are depicted in Table 2.

From the results in Table 2, we see that encryption with a randomized key does
introduce overhead, especially when the RSA modulus size grows. However, it is rather
negligible for the 1024-bit case, which is currently the most popular modulus size.

The decryption cost for IB-mRSA is identical to mRSA. The performance of mRSA
has been reported on by Boneh, et al. in [9]. For example, a 1024-bit mMRSA decryption
costs around 35ms on an 800 MHz PIlII, as compared to 7.5ms for plain RSA on the
same platform. We note that this is still much cheaper than 40ms that is needed for
Boneh/Franklin IBE decryption (for 1024 bits of security on a even more powerful
hardware platform).

5 |IB-mRSA versus Boneh/Franklin IBE

We now provide a detailed comparison of BF-IBE and IB-mRSA. The comparison is
done along several aspects, including: practicality, revocation, security and cost of key
generation.
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Practicality and Performance: Although BF-IBE and IB-mRSA have similar architec-
tures, the underlying cryptographic primitives are completely different. Compared to
the elliptic curve primitives used in BF-IBE, IB-mRSA is much easier to deploy since
RSA is currently the most popular public key encryption method. Recall that IB-mRSA
is fully compatible with standard RSA encryption. Moreover, if optional individual cer-
tificates are used, IB-mRSA is fully compatible with current PKI-s. Thus, it offers a
smooth and natural transition from normal 1D-based to public key cryptography.

In addition, IB-mRSA offers better performance than BF-IBE. As seen from the
comparison in Table 3, IB-mRSA is noticeably faster than BF-IBE in both key genera-
tion and message encryption.

BF-IBE|IB-mRSA

Private Key Generation| 3ms | < 1ms
Encryption Time 40ms 7ms
Decryption Time 40ms | 35ms

Table 3. Performance Comparison of BF-IBE (on PIll 1GHz) and IB-mRSA (on Plll 800MHz)
with 1024-bit security.

Revocation: BF-IBE does not explicitly provide revocation of users’ security capabili-
ties. This is natural since it aims to avoid the use of certificates in the course of public
key encryption. On the other hand, revocation is often necessary and even imperative.

The only way to obtain revocation in normal IBE is to require fine-grained time-
dependent public keys, e.g., public keys derived from identifiers combined with time- or
date-stamps. This has an unfortunate consequence of having to periodically re-issue all
private keys in the system. Moreover, these keys must be (again, periodically) securely
distributed to individual users. In contrast, IB-mRSA inherits its fine-grained revocation
functionality from mRSA [9]. IB-mRSA provides per-operation revocation, whereas,
BF-IBE provides periodic revocation, which clearly has coarser granularity. Essentially,
IB-mRSA allows revocation to commence at any time while BF-IBE revokes users by
refusing to issue new private keys. However, BF-IBE does not prevent the type of an
attack whereby an adversary who compromises a previous or current key can use them
to decrypt previously encrypted messages. This can be a serious attack in some settings,
such as military applications.

Trusted Third Parties: Both SEM in IB-mRSA and PKG in BF-IBE are trusted third
parties. However, the difference in the degree of trust is subtle. A SEM is fully trusted
since its collusion with any user can result in a compromise of all other users’ secret
keys, due to the shared RSA modulus. Nonetheless, a compromise of a SEM alone
does not result in a compromise of any users’ secret keys. A PKG is areal TTP since it
knows all users’ secrets, thus, a compromise of a PKG results in a total system break.
While a PKG can also be a CA at the same time, a SEM can never be allowed to play
the role of CA.
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If BF-IBE is used to provide fine-grained revocation, frequent key generation and
secure key distribution are expensive procedures. Although a PKG is not required to be
on-line all of the time, in practice, it must be constantly available since users do not all
request their current private keys at the same time. Therefore, as the revocation interval
in BF-IBE gets smaller, the on-line presence of a PKG becomes more necessary.

6 Implementation

We implemented IB-mRSA for the purposes of experimentation and validation. The im-
plementation is publicly available at htt p: // sconce. i cs. uci . edu/ sucses.
The software is composed of three parts:

1. CA and Admin Utilities: domain certificate, user key generation, (optional) certifi-
cate issuance and revocation interface.

2. SEM daemon: SEM process as described in Section 2

3. Client libraries: IB-mRSA user functions accessible via an API.

The code is built on top of the popular OpenSSL [17] library. OpenSSL incorpo-
rates a multitude of cryptographic functions and large-number arithmetic primitives. In
addition to being efficient and available on many common hardware and software plat-
forms, OpenSSL adheres to the common PKCS standards and is in the public domain.
The SEM daemon and the CA/Admin utilities are implemented on Linux, while the
client libraries are available on both Linux and Windows platforms.

In the initialization phase, a CA initializes the domain-wide cryptographic setting,
namely (n,p,q,p’,q") and selects a mapping function (currently defaulting to MD5)
for all domain clients. The set up process follows the description in Section 2. For each
user, two structures are exported: 1) SEM bundle, which includes the SEM’s half-key
d?EM and 2) user bundle, which includes d¥ and the entire server bundle.

The server bundle is in PKCS#7[1] format, which is basically a RSA envelope
signed by the CA and encrypted with the SEM’s public key. The client bundle is in
PKCS#12[2] format, which is a shared-key envelope also signed by the CA and en-
crypted with the user-supplied key which can be a pre-set key, a password or a pass-
phrase. (A user is not assumed to have a pre-existing public key.)

After issuance, each user bundle is distributed in an out-of-band fashion to the ap-
propriate user. Before attempting any IB-mRSA transactions, the user must first decrypt
and verify the bundle. A separate utility program is provided for this purpose. With it,
the bundle is decrypted with the user-supplied key, the CA’s signature is verified, and,
finally, the user’s half-key are extracted and stored locally.

To decrypt a message, the user starts with sending an IB-mRSA request, with the
SEM bundle piggybacked. The SEM first check the status of the client. Only when the
client is deemed to be a legitimate user, does the SEM process the request using the
bundle contained therein. As mentioned earlier, in order to encrypt a message for an
IB-mRSA, that user’s domain certificate needs to be obtained. Distribution and man-
agement of domain certificates is assumed to be done in a manner similar to that of
normal certificate, e.g., via LDAP or DNS.
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6.1 Emailer client plug-in

To demonstrate the ease of using IB-mRSA we implemented plug-ins for the popular
Eudora[19] and Outlook[16] mailers. The plug-ins allow the sender to encrypt outgoing
emails to any client in the common domain using only one domain (organizational)
certificate. When ready to send, the sender’s plug-in reads the recipient’s email address
and looks up the organization certificate by using the domain name in the email address.
A screen snapshot of the Eudora plug-in is shown in Figure 4.

% Fudora - [Xuhuadin@usc.edu, No Subject] - =101 x|
@Fh Edt Mailbox Message Transfer Special Tools Help ,] i___l

S IEE T Y R Ak

]__']<none> "I"""‘E“‘i * M E oM I M(I Sﬁs 950"‘"
[acia Al BT UumB - F B qk:-g@

To: Huhuadin@usc. edu
From: ding <suhuadin@usc edu>
Subject:

M

Lfls s

This is 3 identity-based encrypted email

@ou | &n u@ Xuhuadin@usc.e... QI.IALCOMM

For Help, press F1 UM |

Fig. 4. Eudora IBE Plugin

When an email message encrypted with IB-mRSA is received, an icon for IB-mRSA
is displayed in the message window. To decrypt the message, the user just clicks on the
IB-mRSA icon. The plug-in then contacts the user’s SEM to get a partially decrypted
message (if the user is not revoked). This is basically the same process as in mRSA.

7 Summary and Future Work

We described IB-mRSA, a practical and secure identity-based encryption scheme. It is
compatible with standard RSA encryption and offers fine-grained control (revocation)
of users security privileges.

Several issues remain for future work. It is unclear whether IB-mRSA can be shown
secure under the standard model (our argument utilizes the random oracle setting).
Moreover, we need a more formal analysis of semantic security. Another issue relates to
IB-mRSA performance. Using a hash function for public key mapping makes encryp-
tion more expensive than RSA since the public exponent is random (and on the average
half of the bits are set). We need to investigate alternative mapping functions that can
produce more “efficient” RSA exponents.
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A Proof of Security

A.1 Notations and Attack Model

Throughout the appendix, we use the following notations

KG: Key Generation Function

PE(): IB-mRSA/OAEP encryption system.

— DOy, : Decryption oracle with private key d;

RO:Random oracle

N: The common RSA modulus

— e;/d;: the i-th user’s public key/private key

n: The number of users in PE

g.:The number of encryptions allowed to be performed by each user

— qq: The maximum number of decryption queries the adversary can ask

Under the notion of indistinguishability of security, the adversary A takes the public key
and outputs two equal length messages mg, my. Then, it gets a challenge ciphertext C,
computed by an encryption oracle which secretly picks b €z {0, 1} and encrypts m.
A is challenged to output b with a probability non-negligibly greater than 1/2. In CCA
attack model, A is allowed to send queries to a decryption oracle, with the restriction
that A is not allowed to query on the challenge ciphertext c.

A.2 Proof of Lemma 1

Proof. The lemma means that if there exists an attack algorithm B with polynomial
time complexity, breaking the security of IB-RSA/OAEP with success probability e,
then there exists an attack algorithm F with the same polynomial degree of running
time, breaking RSA/OAEP with the same success probability; and vice versa.

The reverse direction is obvious. For any F that can break the indistinguishability of
standard RSA, it breaks IB-mRSA in single-user mode. Thus we have Succ®(#', gq) <
SucctB(t, qq). Now we show SucclB(t,qq) < Succ®(t', qq).

Let B3 be the polynomial algorithm attacking on the indistinguishability of PE(KG, N, 1)
containing the single user Uy and its public key e and secret bundle d,,,. By allowing
B to know d,,,, we model the concern that the user in the system may be malicious.
We construct F as the adversary algorithm against the standard RSA/OAEP (]\7 ,€é) and
analyze its success probability and time complexity. Replacing G function in P& by
a random oracle and acting as the random oracle and decryption oracle for B, A runs F
as follows.
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Experiment FE54(N, ¢, DO, RO)

Select two random messages (mo, 1) with equal length. The encryption oracle
EO. secretly selects arandom bitb €z {0, 1} and encrypts m;, into the ciphertext
c. Given ¢, F runs the following to determine b.

1. Generate a random number r and a string id;
2. Initialize PE(KG, N) with single-user setting by N < N, For user 1Dy «—
id;
PE queries its random oracle (F) for eo;
ep < €,
5. Initialize B with (mo, ™1, ¢) and the target system P£(KG, N) and user pub-
lic key eg, user bundle r;
6. Run B. The number of decryption queries is bounded by ¢q:
(@) For all B’s random oracle queries on OAEP encoding/decoding, F for-
wards them to RO and hands the answers back;
(b) For all B’s decryption oracle queries, F forwards them to DO, , and
hands the answers back;
(c) For B’srequests c to SEM (remember that the adversary might be inside
the system): F queries DOy on c¢. On getting the reply ¢? mod n, F
hands back ¢ /¢” mod n as the reply from SEM to B.
7. B halts outputting a bit b’;
8. Return?’;

> ow

Clearly, if B’s output &’ equals b, F successfully discovers b. This holds for all
polynomial algorithm B. Thus we have Succl®(t, qq) < Succf(¥', qq). As for the time
complexity of F, the steps 1~5 and steps 7,8 take constant time, in that the cost is
independent of the security parameter, and step 6 runs in time ¢ . Hence, the overall
time for F is t + ¢, which leads us to the conclusion of Succi®(t, qq) = Succ?(t', qq).
O

A.3 Proof of Lemma 2

Proof. If all users in PE are considered trusted, we do not need to consider all attacks
originated from the inside users. The P& is therefore a IB-mRSA/OAEP in multi-user
setting, whose security for single-mode is proved in Lemma 1.

To show the polynomial reduction, the proof in [5] constructs an attack algorithm B
for single-setting. B calls another algorithm A, which can break the multi-user setting.
In order to argue the security in CCA2 model, B has to simulate the decryption oracles
for A. This is simple in their case, where 5 can invoke key generation function to
obtain all needed public/private key pairs. Unfortunately, this is not the case in IB-
MRSA setting, since the key generation will not give B the private keys. We slightly
revise the original proof.

Still, A targets at a multi-use setting with public keys { N, e, . . ., e,, }. However, we
construct 3, targeting at {V,e = [];_,(e;)}. The algorithm for A’s decryption query
is shown below:
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Decryption oracle simulator (B, A, N, eo,...,en,e =[[1,€s)
B simulates decryption oracle for A with the help from its own oracle DO.
(d is the corresponding secret key to (n, e).)

A — B: (c,e;),

B — DOy ¢

B— DOy ¢ =c*modn
BB computes b = f

A— B a=c"modn

g ~wdE

One can easily check that the answer « is exactly ¢!/¢:. Thus, the proof for Theorem
4.1 in [5] still holds, which also proves this lemma.
O

A.4 Proof of Lemma 3

Proof. (Sketch) No secret channel is assumed either in IB-mRSA protocol execution or
in the attack model. Thus, the outsider observes everything that the insider does, except
for {d,, } and I'y, ,,. However, an outsider can simulate I";, ,, with the help of a random
oracle and the decryption oracles.

Note that a user’s key-share is nothing but a random number derived from an ideal-
ized hash function, which can be replaced by the random oracle RO. The outsider can
query RO and obtain a set of random values {r;} with the same distribution as {d,, }.
For each ciphertext c in I'y, ,, (encrypted with e,,,) the adversary constructs I7; , by
computing ¢« = ¢ /c"i, where c% is obtained from the decryption oracle DOy, .
All ¢, d,,,,r; are random integers. (Note that c is also random since OAEP encoding is
applied before exponentiation). Thus, Pr{l'y, »} = Pr{l} ,}, which leadsto V; and
V5 having the same distribution O

A.5 Proof of Lemma 4

Proof. We show that x|y is a sufficient and necessary condition for the existence of f.
SUFFICIENCY: if z|y, i.e. 3k € N, s.t. y = kx. We construct f as

f:a — a*modn

One can easily check that f is the desired function.

NECESSITY: Suppose there exists a function f satisfying the requirement, while y
kx +r,where k,r € Mand 1 < r < 2. Given ¢ = m® mod n, We can compute ¢; =
f(¢) = m¥ mod n. Suppose g = ged(z,y), i.e da,b € Z, s.t. ax + by = ¢. Thus, in
polynomial time, we can get m¢ by computing c®c? mod n. If we let z = hg, we have
actually constructed a polynomial-time algorithm, which, taking ¢ = (m9)" mod n and
h, n as input, outputs ¢*/" mod n without knowing the factorization of n. (Note that z
is relatively prime to ¢(n), which implies that & is also relatively prime to ¢(n) and is
a valid RSA public key exponent.) However, this contradicts the RSA assumption. (]
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Abstract. ldentity-based encryption (IBE) [5] and digital signatures are impor-
tant tools in modern secure communication. In general, identity-based crypto-
graphic methods facilitate easy introduction of public key cryptography by al-
lowing an entity’s public key to be derived from some arbitrary identification
value such as an email address or a phone number. Identity-based cryptography
greatly reduces the need for, and reliance on, public key certificates.

Mediated RSA (mMRSA) [4] is a simple and practical method of splitting RSA
private keys between the user and the Security Mediator (SEM). Neither the user
nor the SEM can cheat one another since each signature or decryption must in-
volve both parties. mRSA allows fast and fine-grained control (revocation) over
users’ security privileges. However, mRSA still relies on public key certificates
to derive public keys.

Current identity-based cryptographic methods do not support fine-grained revo-
cation while mediated cryptography (such as mRSA) still relies on public key
certificates to derive public keys. In this paper we present IB-mRSA, a variant
of mRSA that combines identity-based and mediated cryptography. IB-mRSA is
simple, secure and very efficient.

1 Introduction

In a typical public key setting, a user’s public key is explicitly encoded in a public key
certificate which is, essentially, a binding between the certificate holder’s identity and
the claimed public key. This common PKI model requires universal trust in certificate
issuers (Certification Authorities or CAs). This also has some well-known side-effects
such as cross-domain trust and certificate revocation. The main problem, however, is the
basic assumption that all certificates are public, ubiquitous and, hence, readily available
to anyone. We note that this assumption is not always realistic, especially, in wireless
networks where connectivity is sporadic.

In contrast, identity-based cryptography changes the nature of obtaining public
keys by constructing a one-to-one mapping between identities and public keys. Thus,
identity-based cryptography greatly reduces the need for, and reliance on, public key
certificates and certification authorities. Generally speaking, identity-based encryption
and identity-based digital signatures are useful cryptographic tools that facilitate easy
introduction of, and/or conversion to, public key cryptography by allowing a public key
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to be derived from arbitrary identification values such as email addresses or phone num-
bers. At the same time, identity-based methods greatly simplify key management since
they reduce both: the need for, and, the number of, public key certificates. However, one
notable drawback is that current identity-based cryptographic methods do not support
fine-grained revocation. (Revocation is typically done via Certificate Revocation Lists
— CRLs or similar structures.)

Mediated RSA [4] is a simple and practical method of splitting RSA private keys
between the user and the SEM. Neither the user nor the SEM can cheat one another
since each signature or decryption operation must involve both parties. mRSA allows
fast and fine-grained control (revocation) of users’ security privileges. However, nRSA
still relies on public key certificates to derive public keys.

Our goal in this paper is to combine the attractive features of identity-based cryp-
tography with the fine-grained control of mMRSA. To this end, we present IB-mRSA, a
variant of mRSA that combines identity-based and mediated cryptography. IB-mRSA
is simple, secure and very efficient.

Organization: The rest of this paper is organized as follows. In the next section we
provide a brief overview of mediated RSA. Next, we describe IB-mRSA in Section 3
and analyze its security. Sections 5 and 6 discuss the implementation of IB-mRSA and
its performance, respectively.

2 Overview of Mediated RSA

Mediated RSA (MRSA) involves a special entity, called a SEM an on-line partially
trusted server. To sign or decrypt a message, Alice must first obtain a message-specific
token from the SEM. Without this token Alice can not use her private key. To revoke
Alice’s ability to sign or decrypt, the administrator instructs the SEM to stop issuing
tokens for Alice’s public key. At that instant, Alice’s signature and/or decryption capa-
bilities are revoked. For scalability reasons, a single SEM serves many users. One of
the mRSA’s advantages is its transparency: SEM’s presence is invisible to other users:
in signature mode, mRSA vyields standard RSA signatures, while in decryption mode,
MRSA accepts plain RSA-encrypted messages.

The main idea behind mRSA is the splitting of an RSA private key into two parts
as in threshold RSA [9]. One part is given to a user while the other is given to a SEM.
If the user and the SEM cooperate, they employ their respective half-keys in a way that
is functionally equivalent to (and indistinguishable from) standard RSA. The fact that
the private key is not held in its entirety by any one party is transparent to the outside,
i.e., to the those who use the corresponding public key. Also, knowledge of a half-key
cannot be used to derive the entire private key. Therefore, neither the user nor the SEM
can decrypt or sign a message without mutual consent.

We now provide a brief overview of mRSA functions. (For a detailed description
and security analysis of MRSA, we refer the reader to [4].) The variant described below
is the additive mRSA (+mRSA) as presented by Boneh, et al. in [4]. (There is also a
very similar multiplicative mMRSA (*mRSA) first proposed by Ganesan [8].) The first
function +nRSA. key is used by the CA to set up the user’s public/private key-pair and
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split the private key into two shares. The other two, +mRSA. si gn and +mRSA. decr,
are the signing and decryption functions, respectively. We note that no encryption and
signature verification functions are specified since they are identical to those in plain
RSA.

Al gorithm +nmRSA. key (executed by CA)
Let k (even) be the security parameter

1. Generate random k/2-bit primes: p, ¢
2. n «— pq

3. e < Zi,

4. d «— 1/emod ¢(n)

5 d, & Z,—{0}

6. dsem — (d—dy) mod ¢(n)

7. SK «— d

8. PK «— (n,e)

After computing the above values, CA securely communicates ds.,, to the SEM
and d,, — to the user. (See [4] for details.) The user’s public key PK is released, as
usual, in a public key certificate.

Prot ocol +nmRSA. si gn (executed by User and SEM)

1. USER: h «— H(m)

where H() is a suitable hash function such as SHA-1 and |H ()| < k
2. USER: send h to SEM.
3. In parallel:
3.1 SEM:
(a) If USER revoked return (ERROR)
(b) PSsem «— h%em modn
(c) send PSsem to USER
3.2 USER:
(@) PS. < h% modn
USER: ' « (PSsem * PS,)¢ mod n
USER: If b’ # h then return (ERROR)
S «— (PSsem * PSy,) mod n
USER: return (h,S)

No ok

3 ldentity-Based mRSA

The main feature of identity-based encryption is the sender’s ability to encrypt messages
using the public key derived from the receiver’s identity and other public information.
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Prot ocol +nRSA. decr (executed by User and SEM)

=

USER: m’ « encrypted message
USER: send m' to SEM
3. In parallel:
3.1 SEM:
(a) If USER revoked return (ERROR)
(b) PDsern «— m/%sem mod n
(c) Send PDgem to USER
3.2 USER:
(@) PD, «— m'* modn
4. USER:m «— (PDsem * PDy) mod n
5. USER: return (m)

N

The receiver’s identity can be the receiver’s email address, user id or any value unique
to the receiver (essentially, an arbitrary string). To compute the receiver’s encryption
key, an efficient public mapping function f() must be set beforehand. This function
must be a one-to-one mapping from identity strings to public keys.

The basic idea behind identity-based mRSA is the use of a single common RSA
modulus n among all users of a system. This modulus is assumed to be public and con-
tained in a public key certificate issued, as usual, by some Certificate Authority (CA).
To encrypt a message for a certain recipient (Bob), the sender (Alice) first computes
epob = f(IDpoy) Where 1D g,y is the recipient’s identity value, such as Bob’s email
address. Thereafter, the pair (eg., ) is treated as a plain RSA public key and normal
RSA encryption is performed. On Bob’s side, the decryption process is identical to that
of mRSA.

We stress that using the same modulus by multiple users in a normal RSA setting
is utterly insecure. It is subject to a trivial attack whereby anyone — utilizing one’s
knowledge of a single key-pair — can simply factor the modulus and compute the other
user’s private key. However, in our present context, we make an important assumption
that:

[IB-mRSA Assumption:] Throughout the lifetime of the system, the adversary
is unable to compromise a SEM.

Obviously, without this assumption, IB-mRSA would offer no security: a single SEM
break-in coupled with the compromise of just one user’s key share would result in
the compromise of all users’ (for that SEM) private keys. The IB-mRSA assumption
is slightly stronger that its mRSA counterpart. Recall that, in mRSA, each user has a
different RSA setting, i.e., a unique modulus. Therefore, to compromise a given user an
adversary has to break into both the user and its SEM.

We now turn to the detailed description of the IB-mRSA scheme.

3.1 System Setting and User Key Generation

In the following, we use email addresses as unique identifiers of the public key owners
in the system. However, as mentioned above, other identity types can be used just as
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well, e.g., Unix UIDs, HTTP addresses, physical addresses or even phone humbers. We
use the notation I D 4;;.. to denote the user’s (Alice) email address that will be used to
compute the public exponent.

In the initialization phase, a trusted party (CA) sets up the RSA modulus for all
users in the same system (organization or domain). First, CA chooses, at random, two
large primes p’ and ¢’ such that p = 2p’ + 1 and ¢ = 2¢’ 4 1 are also prime. Then
it computes n = pq, which is, in fact, a Blum integer. Since n is a Blum integer, a
randomly chosen number in Z,, has negligible probability of not being relatively prime
to ¢(n). (See Section 4 for further discussion.) Hence, our mapping function f can be
quite trivial.

The public exponent is set to be the email address represented as a binary string,
padded with zeros on the left and with the rightmost bit set to one. This ensures that
e alice 1S 0dd and, with overwhelming probability, relatively prime to ¢(n). It is assumed
that the email address is at most 8 bits shorter than the size of the RSA modulus. This
is reasonable considering practical RSA modulus sizes. The currently recommended
minimum RSA modulus size is 1024 bits. Consequently, our assumption translates into
the email address being at most 127 characters (bytes) long. We observe that most email
addresses tend to be under 30 characters.

In fact, it is largely unnecessary to use the entire email address as input to f(); it
suffices to use only its leftmost component, i.e., the “username” portion. This is because
the rest of the address is common to all email users in the domain. For example, if Al-
ice’s email addressis: Al i ce. Smt h@ cs. uci . eduwecanuse “Al i ce. Sm t h”
as input to (). The common part “i cs. uci . edu” can be assumed to be part of the
domain-wide (organizational) certificate.

The complete IB-mRSA key generation proceeds as follows:

Al gorithm | B-nRSA. key (executed by CA)
Let k (even) be the security paraneter

1. Generate random k /2-bit primes: p’, ¢’ s.t.p = 2p’ +1,q = 2¢’ + 1 are also
prime.
2. n «— pq
3. For each user (Alice):
(@) k¥ «— k—|IDgalice|] —8
() eatice — F(IDasice) = 0% ||ID asice||00000001
(C) dAtice — 1/eAlice mod ¢(n)
(d) dAlice,u L Zn - {O}
(e) dAlice,sem — (d — dAlice u) mod ¢(n)

A domain- or system-wide certificate (Cert,q) is issued by the CA after com-
pletion of the key generation algorithm. This certificate contains all the usual fields
normally found in RSA certificates with few exceptions discussed later in Section 4. In
particular, it contains the common modulus » and (if applicable) the common part of
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the email address for all users. User’s and SEM’s key shares are distributed securely as
in the mRSA scheme described in Section 2.

For the sake of compatibility with other (not identity-based) RSA implementations
— including plain RSA and mRSA - the CA may, upon request, issue an individual
certificate to a user. In most cases, however, an individual user certificate would not
be needed, since not having such certificates is exactly the purpose of identity-based

cryptography.
3.2 IB-mRSA Encryption

To encrypt a message, the sender needs the recipient’s email address and its organization
certificate.

Al gorithm | B-mRSA. encr

1. e «— IB —mRSA.key(Email)

2. Retrieve n from organization certificate;

3. Let (e, n) be the public key and encrypt message m using standard RSA en-
cryption with OAEP padding.

Note that the recipient’s public key certificate is not required for the sender to en-
crypt. Since the key is derived from the receiver’s unique identifier, the sender does not
need a certificate to ensure that the intended receiver is the correct public key holder.
Furthermore, instantaneous revocation provided by mRSA obviates the need for the
sender to perform any revocation checks. The decryption process is essentially the same
as in mRSA: the security administrator merely notifies the SEM and the revoked user
is unable to decrypt any further messages.

3.3 Signature Protocol

IB-mRSA can be also used for signing messages. Since the signing protocol is the same
as in mRSA, we do not provide a detailed description. Basically, a user computes its
own half-signature while the SEM computes its half-signature. When the two parts are
coalesced together, a full-blown RSA signatures is obtained.

The verification procedure is slightly different from mRSA (or plain RSA). In mRSA
and RSA, the verifier obtains the public verification key, from the signer’s public key
certificate. The certificate can be obtained from the signature structure itself or from
some public site. In ID-based signature schemes, the verifier computes the signer’s
public key using the signer’s identity. In IB-mRSA, as mentioned before, we still need
a domain certificate, which includes the common RSA modulus n. However, we should
point it out that this certificate is not a normal public key certificate but a sort of an
attribute certificate for the entire domain. The verification protocol is as follows:

Note that, since signature generation is the same as in mRSA, the binding signature
semantic is preserved [4]. This means that the verifier can be sure that the signer’s
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Al gorithm | B-nRSA. verify

Extract and verify domain certificate from signature or from a public site.
Obtain RSA modulus n from domain certificate;

e «— IB— mRSA.key(Email);

Let (e, n) be the public key and verify the signature using standard RSA ver-
ification algorithm with OAEP padding.

oD

private key was valid (believed by the SEM to be valid) at the time the signature was
computed.

4  Security Analysis

In this section, we discuss some security issues unique to IB-mRSA. Clearly, the biggest
security concern for IB-mRSA is the use of the common modulus for all users within
the same domain.

SEM Security: Let us consider an attacker trying to decrypt a message sent to Alice
or to forge Alice’s signature on a certain message. Recall that the token sent by SEM
back to Alice is t = 2%~ mod N for some value of z. The attacker sees both x and
the token t. In fact, since there is no authentication of the user’s request to the SEM, the
attacker can obtain this ¢ for any x of its choice. We claim that this information is of no
use to the attacker. The reason is that, d.,, is just a random number in Z,, independent
of the rest of the attacker’s view. Using a simulation argument, we claim that any attack
possible with the SEM can be mounted to attack standard RSA. One can simulate the
SEM by picking a random integer ds.,, €r Z, and thus use the attack on the SEM to
mount an attack on standard RSA.

Suppose the attacker is able to compromise the SEM and expose the secret key
dsem- This enables the attacker to “un-revoke” previously revoked, or block possible
future revocation of currently valid, certificates. However, knowledge of d ., does not
enable the attacker to decrypt or sign messages on behalf of its users. The reason is ob-
vious: Note that Alice does not send her partial results to her SEM. Thus the attacker’s
view of Alice can be simulated in the normal RSA setting, where the attacker just picks
a random number as d.,, and make computations on the ciphertext, messages to sign
and signatures generated by Alice.

Security of Common Modulus: As mentioned earlier, using a common RSA modulus
is clearly unacceptable in plain RSA setting. In the mediated RSA architecture, sharing
a modulus is feasible since no one knows a complete private/public key-pair. In fact, no
coalition of users is able to compute a public/private key-pair. The only way to “break”
the system appears to be by subverting a SEM. Thus, in the context of IB-mRSA we
have to assume that a SEM is a fully trusted party, as opposed to semi-trusted in
mRSA.
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One unclear issue has to do with the existence of attacks on a common modulus
with a large number of public/private key pairs. With one public/private key pair, it is
widely believed that RSA encryption (with OAEP padding) is secure against adaptive
chosen ciphertext attack [2], [7]. More specifically, such encryption is secure even if the
attacker is allowed to employ a decryption oracle at will. In IB-mRSA we introduce a
new attack model:

The adversary is allowed to freely choose ¢’, and ask the decryption/signature
oracle to decrypt/sign a chosen ciphertext/plaintext with d’ any number of
times. (Where d’ is the private counterpart of e’ and RSA modulus is fixed.)

We refer to this type of a decryption oracle as a multi-key oracle. This oracle re-
veals more information than a traditional decryption or signature oracle, however, it
does not possess more secret information. The reason being that, knowing one RSA
private/public key pair is equivalent to knowing the factorization of n, which allows
one to compute a private exponent for any given public exponent. A SEM in IB-mRSA
can be viewed as a multi-key oracle in a sense that “bad” users can act as attackers
and use the SEM to decrypt/sign any number of chosen messages. Although no formal
security proof is offered in this paper, we were unable to find any attacks in this model.
(Albeit, it seems that the security of the multi-key oracle is somehow tied to the Strong
RSA Assumption [6].)

Key Generation In Section 3.1, we directly use the numerical value of an email address
as a public key. The main requirement for an integer to form a proper RSA public
exponent e is that it should be relatively prime with ¢(n). Clearly, not all ASCII strings
satisfy this requirement.

Since we choose n = (2p’ + 1)(2¢’ + 1), we have ¢(n) = 4p'q’. Both p’ and ¢’
are large primes (ca. 511 bits) while a typical email address is typically at most 320
bits, which is much smaller than p’ and ¢’. In addition, note that all email addresses are
converted into odd integers in Algorithm IBE mRSA.Key. Thus the derived e (which is
odd) is not divisible by any of: {2,4,p’,¢'}. In other words, e is relatively prime with
o(n).

Even if a very long email address is used, the probability of ged(e, ¢(n)) > 1is
negligible. The reason is that all odd integers which are not relatively prime with 4p’¢’
are: {p/,3p’,...,(4¢ — )p’}and {¢’,3q’,..., (4p' — 1)¢’}. There are 2(p' + ¢’ — 1)
such integers. Thus, for a random odd integer r < ¢(n):

®+qd -1
Prlged(r,¢p(n)) > 1] = T
which is overwhelmingly small.

As pointed out in [3], a secure RSA setting requires that the decryption key to be
large enough. Usually it should be at least larger than »°.5, which is relatively the size
of p and ¢. This is guaranteed by choosing short email address. For example, if e is at
most 320 bits, the corresponding d should be longer than 512 bits, in case of a 1024-bit
modulus.
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Forward Security One of the motivations for research on ID-based cryptosystems is to
provide forward security [1]. A usual forward security technique involves using a time-
variant parameter along with user identifier, such that the derived key changes with
time, e.g., every day or every month.

IB-mRSA can provide forward security in the same manner. Rather than comput-
ing e from just an email address, current date can be appended. In this case, the key
distribution process in Section 3.1 should be revised. Instead of getting the signed and
encrypted key bundle when joining an organization, the user sends a request to the CA
when it received the first encrypted message in the current period. This causes the CA
to generate and distribute the appropriate keys.

This is clearly an expensive process since the CA should be on-line and ready for
users’ requests. In addition, the CA needs to compute all non-revoked keys in every
period. Thus, forward secure IB-mRSA is more suitable for organizations where IB-
MRSA is lightly used and there exists an secure channel between users and the CA to
protect key generation requests.

Organization Certificate and User Certificate Once the common RSA modulus n and
the mapping function f() is chosen, the CA issues and publishes a domain (attribute)
certificate which includes these two values. In addition, the certificate also contains the
organization/domain name (e.g. @ cs. uci . edu).

User certificates are, as mentioned before, optional in IB-mRSA. They actually
bridge IB-mRSA with plain RSA and mRSA. With the individual certificates, IB-mRSA
becomes fully compatible with normal mRSA. The sender can get the public key from
the individual certificate if it trusts it, or rely on the domain certificate and receiver’s
email address to compute the public key.

5 Implementation

To test our assertions and gain experimental and practical experience, we implemented
the IB-mRSA scheme. Our implementation includes a IB-mRSA library as well as a
fully functional email plug-ins for Eudora[12] and Microsoft Outlook[10]. It is freely
available from the following web address:

http://sconce.ics. uci.edu/ SUCSES

This implementation, incidentally, is part of the of the SUCSES project code re-
lease and borrows much of the code from the mRSA package. We re-used the basic
MRSA functions, including user and SEM bundle generation as well as decryption and
signature procedures.

Our Eudora and Outlook plug-ins allow the sender to encrypt outgoing email to all
clients in the same domain using only one domain (organizational) certificate. When
the user is ready to send, the plug-in reads the recipient’s email address and looks up
the organization certificate by using the domain name in the email address. A screen
snapshot of the Eudora plug-in is shown in Figure 1.

When an email message encrypted with IB-mRSA is received, an icon for IB-mRSA
is dislayed in the message window. To decrypt the message, the user just clicks on the

65



%2 Fudora - [Xuhuadin@usc.edu, No Subject] =10l x|
D3 Fle Edt Malbox Message Transfer Special Tools Windo 18] x|
‘*ﬁ@%@cﬁat X eI IR Al
I * || <nane: "I M‘ME“'I *®E oM I M I Sﬁs g Send
fasial -|1asruau_u-rrrr, EEE dk:-&@
To: Xubuadingusc edu j
From: ding <xubuadin@usc edu>
Subject:
- 5
This is a identity-based encrypted email =
d
@ou | &n ﬂ@ Kuhuadin@use.e,.. QI.IALCONW\
For Help, press F1 | _M,M-

Fig. 1. Eudora IBE Plugin

IB-mRSA icon. The plug-in then contacts the user’s SEM to get a partial decrypted
message (provided the user is not revoked). This is basically the same process as plain
mRSA [4].

6 Performance

When plain RSA is used for encryption, the public encryption exponent e is typically a
small integer with only a few bits set to 1. One example is the popular OpenSSL toolkit
[11] which uses 65, 537 as the default public key value for RSA certificates. Encryption
with such small exponents can be accelerated with specialized algorithms for modular
exponentiation. However, in identity-based systems, there is no such luxury of choosing
special exponents. Therefore, e is a larger integer with likely higher number of 1 bits.

Keys RSA Modulus 1Kb | RSA Modulus 2Kb |[RSA Modulus 4Kb
65,537 2.3 ms 3.6 ms 11.7 ms
xhding@isi.edu 2.8 ms 9.5ms 32.1ms
Alice.Smith@ics.uci.edu 4.8 ms 15.5ms 53.7 ms

Table 1. Performance Comparison of Different Encryption Keys

We ran some simple tests to measure the cost of IB-mRSA encryption for public
keys derived from email addresses. The encryption was tested using Linux 2.4 version
of OpenSSL on an 800MHz P11 workstation. In our tests, we used: 1) “default” en-
cryption exponent 65, 537 and 2) two other exponents derived from different email ad-
dresses. For each key, we encrypted the same message one thousand times and obtained
the average. The results are depicted in Table 1.
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¢From the results in Table 1, we note that encryption with email address-derived
keys does not introduce significant added overhead. Although the IB-mRSA encryption
overhead increases as the RSA modulus size grows, it is somewaht negligible for 1024-
bit modulus (which is currently the most common size).

The decryption cost for IB-mRSA is identical to mMRSA. The performance of MRSA
has been reported on by Boneh, et al. in [4]. For example, a 1024-bit mRSA decryp-
tion costs around 30ms on an 800 MHz PIII, as compared to 7.5ms for plain RSA on
the same platform. We note that this is still much cheaper than 90ms that is needed for
Boneh/Frnklin IBE decryption (for 1024 bits of security on the same hardware plat-
form).

7 1B-mRSA versus Boneh/Franklin IBE

Recently, Boneh and Franklin developed a novel and elegant identity-based encryption
system (IBE) based on Weil Pairing [5]. IBE represents a significant advance in cryp-
tography since the problem that it solved has been open for many years. However, IBE
does not provide revocation of users’ security capabilities. This is natural since it aims
to avoid the use of certificates in the course of public key encryption. On the other hand,
revocation is often necessary and even imperative.

The only way to obtain revocation in IBE is to require fine-grained time-dependent
public keys, e.g., public keys derived from identifiers combined with time- or date-
stamps. This has an unfortunate consequence of having to periodically re-issue all pri-
vate keys in the system. Moreover, these keys must be (again, periodically) securely
distributed to individual users. Therefore, the Public Key Generator (PKG, in IBE’s
parlance) must be on-line much of the time, or, at least, very often. Consequently, we
observe that, when IBE is used to provide fine-grained revocation, a PKG is, for all
practical purposes, equivalent to a SEM in mMRSA and IB-mRSA.

Our conclusion is that, in functional terms, IB-mRSA seems to offer security equiv-
alent to IBE (when the latter provides fine-grained revocation). This is because compro-
mise of a PKG in IBE results in a total system break. The same happens upon a SEM
compromise in IB-mRSA. Moreover, IB-mRSA offers some practical advantages over
IBE.

First, IB-mRSA is fully compatible with plain RSA if (optional) individual certifi-
cates are used. Thus, it offers a smooth and natural transition from ID-based to normal
cryptography. Also, IB-mRSA (which takes roughly 4-5 times less efficient than plain
RSA) offers significantly better performance than IBE.

8 FutureWork and Summary

In this paper, we described a simple, secure and efficient IB-mRSA scheme. IB-mRSA
combines the convenience of identity-based encryption (thus greatly reducing the need
for public key certificates) with the functionality of mediated RSA which provides fine-
grained revocation.

IB-mRSA allows the sender (encryptor) to skip the costly checking of individual
public key certificates. The tight control over users’ security capability is inherited from
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mediated RSA mechanism since the decryption protocol for IB-mRSA is essentially the
same as in mRSA. Furthermore, IB-mRSA can be easily be extended to provide forward
security.

Several issues remain for future work. First, we have not provided a formal proof

that RSA (with OAEP padding) is secure against adaptive chosen ciphertext attack if
the decryption oracle offers replies for multiple private keys with the same modulus.
We also need to investigate alternative mapping functions in order to speed up the en-
cryption with derived public keys.
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Abstract

This paper explores practical and conceptual impli-
cations of using Server-Aided Signatures (SAS). SAS
is a signature method that relies on partially-trusted
servers for generating public key signatures for regu-
lar users. Besides its two primary goals of 1) aiding
small, resource-limited devices in computing heavy-
weight (normally expensive) digital signatures and 2)
fast certificate revocation, SAS also offers signature
causality and has some interesting features such as
built-in attack detection for users and DoS resistance
for servers.

1 Introduction

Digital signatures represent a basic building block for
many secure applications. Their uses range from elec-
tronic commerce transactions to secure email, secure
content (code, video, audio) distribution and other,
more specialized applications such as document no-
tarization. Traditionally, digital signatures are based
on asymmetric (public key) cryptographic techniques
which, at least in some settings, makes them compu-
tationally expensive.

While digital signatures are rapidly becoming ubiq-
uitous, one of the major recent trends in computing
has been towards so-called “smart” devices, such as
PDAs, cell phones and palmtops. Although such de-
vices come in many shapes and sizes and are used
for a variety of purposes, they tend to have one fea-
ture in common: limited computational capabilities
and equally limited power (as most operate on bat-
teries). This makes them ill-suited for complex cryp-
tographic computations such as large number arith-
metic present in virtually all public key constructs.

Furthermore, in many envisaged setting, such as
cell telephony and wireless web access, personal de-
vices are in constant contact with a fixed, wired in-

frastructure. Consequently, access to more powerful
(in terms of both CPU speed and not dependent on
batteries) computing platforms is available to end-
users.

At the same time, increased use of digital signa-
tures accentuates the need for effective revocation
methods. Revocation of cryptographic credentials
and certificates has been an issue for a long time.
However, only now the problem is becoming truly
visible, e.g., the recent Verisign fiasco where a wrong
certificate was issued (ostensibly to Microsoft) and
its subsequent revocation was both slow and painful.
Furthermore, current CRL-based revocation methods
scale poorly and are not widely used in practice. For
example, most current web browsers do not bother
checking CRLs; only the upcoming Windows XP has
some rudimentary CRL-checking facilities.

Effective revocation not only useful but vital in
some organizational settings (e.g., government and
military) where digital signatures are used on impor-
tant electronic documents and in accessing critical
resources. Consider a situation when a trusted user
(Alice) does something that warrants immediate re-
vocation of her security privileges. Alice might be
fired, transferred or she may suspect that her private
key has been compromised. Ideally — immediately
following revocation — no one should be able to per-
form any cryptographic operations involving Alice’s
certificate, i.e., sign with her private key.

In addition, when a cryptographic certificate is re-
voked (or simply expires) digital signatures generated
prior to revocation (or expiration) may need to re-
main valid. This is difficult to achieve with current
revocation methods since CRLs (and similar meth-
ods like OCSP [1]) do not provide a secure means of
distinguishing between pre- and post-revocation sig-
nature activity. The only way to do so is by using
a secure timestamping service for all signatures. Al-
though a secure timestamping service may provide a
secure means of distinguishing between pre- and post-
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revocation signature, it has not been widely adopted
due to its prohibitive cost. Finally, we note that com-
promise of a private key can lead to an unlimited
number of fraudulent signatures being generated and
distributed by the adversary. As often happens in
the event of compromise, contact with the revocation
authority (CA) may not be immediate, e.g., in a spo-
radically connected wireless network. Therefore, it is
important to find a way to limit potential damage.
In this paper we present a method, called Server-
Aided Signatures (SAS), that is designed to addresses
the aforementioned issues. Its goals are three-fold:

1. Assist small, limited-power devices in computing
digital signatures

2. Provide fast revocation of signing capability
3. Limit damage from potential compromise

The rest of the paper is organized as follows. Next
section provides a brief synopsis of our work and its
contributions. Section 5 describes the SAS method in
greater detail; it is followed by the security analysis
in Section 6. Denial of service issues are addressed
in Section 7. Then, implementation and performance
measurements are discussed in Section 8. The paper
concludes with the summary of benefits and draw-
backs of SAS.

2 Synopsis

The signature method (SAS) discussed here is based
largely on a weak non-repudiation technique due
to Asokan et al. [2]. The most notable feature
of the SAS method is its on-line nature. Specifi-
cally, each SAS signature is generated with the aid
of a partially-trusted server called a SEM (short for
SEcurity Mediator). This feature can be viewed as a
mixed blessing. Although it offers a number of ben-
efits which are summarized below, the requirement
for on-line help for each signature is clearly a burden.
We discuss the drawbacks, both real and perceived,
in Section 9.

Informally, a SAS signature is computed as follows
(see also Figure 1):

e First, a prospective signer (Alice) contacts her
SEM and provides the data to be signed as well
as a one-time ticket.

e SEM checks Alice’s revocation status and, if not
revoked, computes a half-signature over the data
as well as other parameters (including the one-
time ticket). SEM then returns the results to
Alice.

e Alice verifies SEM’s half-signature and produces
her own half-signature. Put together, the two re-
spective half-signatures constitute a regular, full
SAS signature. This signature is accompanied
by SEM’s and Alice’s certificates.

The two half-signatures are inter-dependent and each
is worthless in and of itself. This is despite the SEM’s
half-signature being a traditional digital signature: in
the context of SAS, a traditional signature computed
by a SEM is not, by itself, a SAS signature. The half-
signature computed by a user (Alice, in our example)
is actually a one-time signature [3].

Signer
(Alice)

a Par‘tially?ned msg
&

Please help sign msg

. Revoke
¢+, Alice!
*

SAS-signed msg
from Alice

Figure 1: SAS architecture

Verifying a SAS signature is easy: verifier (Bob)
obtains the signature and verifies the two halves along
with the two accompanying certificates.

The main idea is that a SEM, albeit only partially
trusted, is more secure, and much more capable (in
terms of CPU and power consumption) than an aver-
age user. It can therefore serve a multitude of users.
Also, because of its “superior” status, SEM is much
less likely to be revoked or compromised. Since a
signer (Alice) is assumed to have much less comput-
ing power then a SEM, the latter performs the bulk of
the computation, whereas, Alice does comparatively
little work. In the event that Alice’s certificate is re-
voked, the SEM simply refuses to perform any further
signatures on Alice’s behalf. (See Figure 1.) Thus,
revocation is both implicit and fast. However, this
does not obviate the need for Certificate Revocation
Lists (CRLs) since Alice’s certificate may be revoked
after some fraudulent signatures have been already
generated. A CRL may still be necessary to convey
to all verifiers the exact time of revocation and hence
to sort out pre- and post-revocation signatures.

The general system model of SAS is a good fit for
many mobile settings. For example, as mentioned in
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Section 1, cell phones are only usable when in touch,
via a nearby base station, with a fixed infrastructure.
Each phone-call requires communication with the in-
frastructure. This communication can be overloaded
to piggyback SAS protocol messages.

3 Related Work

The SAS method is based on a weak non-repudiation
technique proposed by Asokan et al. in [2]. In very
general terms, SAS is an instantiation of a mediated
cryptographic service. Recent work by Boneh et al.
[4] on mediated RSA (mRSA) is another example of
mediated cryptography. mRSA provides fast revoca-
tion of both signing and decryption capability. How-
ever, the computation load on the client end is in-
creased in mRSA, which is something that SAS aims
to minimize.

In [5] Reiter and McKenzie propose a the same ad-
ditive splitting technique to improve the security for
portable devices where the private-key operations are
password-protected. Recently, they also proposed an-
other scheme for the more challenging problem of me-
diated (2-party) DSA signatures [6]. Ganesan[7] also
exploited (earlier, in 1996) the same idea for improv-
ing Kerberos security as part of the Yaksha system.

Another way to look at SAS is as an instantiation of
“hybrid” multi-signatures [8]. Viewed more broadly,
the SAS method can be included in the more general
framework of threshold cryptography[9] and secure
multi-party computation[10].

There is also much related work on the topic of cer-
tificate revocation; including CRLs, A-CRLs, CRTs,
2-3 lists and skip-lists. This is reviewed in more detail
in Appendix B.

4 Background

In this section we go over some preliminaries neces-
sary for the remainder of the paper.

4.1 Hash Functions

Informally, a one-way function f() is a function
such that, given an input string x it is easy to com-
pute f(x), whereas, given a randomly chosen y, it
is computationally infeasible to find an x such that
f(x) =y. A one-way hash function h() is a one-way
function that operates on arbitrary-length inputs to
produce a fixed length digest. If y = h(x), y is com-
monly referred to as the hash of x and x is referred
to as the pre-image of y. A one-way hash function

h() is said to be collision-resistant if it is compu-
tationally hard to find any two distinct input strings
x, 2" such that h(z) = h(z').

Several secure and efficient collision-resistant one-
way hash functions have been proposed, e.g., SHA or
MD5 [11]. In the rest of the paper, h() denotes a
collision-resistant one-way hash function.

A collision-resistant one-way hash function can be
recursively applied to an input string. The notation
hi(x) is the result of applying h() i times starting
with the input z, that is:

hi(z) = h(h(... h(h(z))...))

i times

Recursive application results in a hash-chain gener-
ated from the original input:

= h(z), R (2), ..., h"(x)
Hash chains have been widely used since early 1980-s
starting with the well-known Lamport’s method [12].

4.2 Model and Notation
We distinguish among 3 types of entities:

e Regular Users — entities who generate and verify
SAS signatures.

o Security Mediators (SEMs) — partially-trusted
entities assisting regular users in generating SAS
signatures.

o Certification Authorities (CAs) — trusted off-line
entities that issue certificates and link the iden-
tities of regular users with SEMs.

SEMs and CAs are verifiable third parties from the
users’ point of view.

All participants agree on a collision-resistant one-
way hash function family H and a digital signature
scheme. In SAS, the latter is fixed to be the RSA
scheme [13]. Furthermore, each signer (Alice) selects
a “personalized” hash function h4() € H. In essence,
ha() can be thought of as a keyed hash (e.g., [14])
with a known key set to the identity of the signer.
When applied recursively, we also include the index
of the hash function link in each computation, i.e.,
hY(z) can be thought of as a keyed hash where the
known key is the concatenation of the signer’s iden-
tity (Alice) and the index of the link, 3.

In order to minimize computation overhead for reg-
ular users, h() must be efficient and the digital sig-
nature scheme must be efficient for verifiers. (This
is because, as will be seen below, verification is done

71



by regular users, whereas, signing is done by much
more powerful SEMs.) SHA and MD5 are reason-
able choices for the former, while RSA [13] satisfies
the efficient verification requirement when used with
a small exponent such as 3, 17 or 65,537.

4.3 Communication Channel

We assume that the communication channel between
each user and a SEM is reliable (but neither pri-
vate nor authentic). Reliability of the channel implies
that the underlying communication system provides
sufficient error handling to detect, with overwhelm-
ing probability, all corrupted packets. One way to
achieve this is by having each protocol packet ac-
companied by its hash. Furthermore, timeouts and
retransmissions are likewise handled by the commu-
nication system with the assumption that a packet
eventually gets through.

We note that, even if the user is disconnected from
the network!' after sending a signature request to
its SEM and before receiving a reply, the user will
eventually obtain the correct reply (if the request
ever reached the SEM) whenever the communication
channel is re-established. Specifically, as described in
the next section, a SEM always replies with the last
signature it computed for a given user.

5 SAS Description

We now turn to the detailed protocol description.

5.1 Setup

To become a SAS signer, Alice first generates a se-
cret quantity SK9 randomly chosen from the range
of ha(). Starting with this value, Alice computes a
hash-chain:

{ SKY,SK},...SK}7' SK% } where

SK’ =W, (SKY) = ha(SK% ") for1< j< n

The last value, SK, is referred to as Alice’s SAS
root key. It subsequently enables Alice to produce
(n —1) SAS signatures.

Each SEM is assumed to have a secret/public RSA
key-pair (SKsem, PKsem) of sufficient length. (We
use the notation [£]**™ to denote SEM’s signature on
string z). Each CA also has its own key-pair much
like any traditional CA. In addition to its usual role

1This can happen if a wireless device, e.g., a cell phone, is
momentarily out of range of any base station.

of issuing and revoking certificates a CA also main-
tains a mapping between users and SEMs that serve
them. This relationship is many to one, i.e., a SEM
serves a multitude of users. Exactly how many de-
pends on many factors, such as: SEM’s hardware
platform, average user signature request frequency,
network characteristics, etc. We expect the number
and placement of SEMs in an organizational network
to closely resemble that of OCSP Validation Agents
(VAs) [1].

In order to obtain a SAS certificate Cert,, Alice
composes a certificate request and submits it to the
CA via some (usually off-line) channel. Alice’s SAS
certificate has, for the most part, the same format
as any other public key certificate; it includes values
such as the holder’s distinguished name, organiza-
tional data, expiration/validity dates, serial number,
public token key, and so forth. Additionally, a SAS
certificate contains two other fields:

1. Maximum number of signatures n that the en-
closed public key can be used to generate, and

2. Distinguished name and certificate serial number
of the SEM serving the certificate holder.

Once issued, Alice’s SAS certificate Cert, can be
made publicly available via a directory service such
as LDAP [15].

5.2 SAS Signature Protocol

The protocol proceeds as follows. (In the initial
protocol run the signature counter i n—1; it
is decremented after each run. This counter is
maintained by both SEM and Alice.)

Step 1. Alice starts by sending a request containing:
[Alice, m, i, SK] to its assigned SEM. If Alice does
not wish to reveal the message to the SEM, m can be
replaced with a suitable keyed (or, more accurately,
randomized) hash such as the well-known HMAC
[14]. (In that case, Alice would send HMAC,(m)
where r is a one-time random value used a key in the
HMAC computation.)

Alice may also (optionally) enclose her SAS
certificate.

Step 2. Having received Alice’s request, SEM
obtains Certs (either from the request or from
local storage) and checks its status. If revoked,
SEM replies with an error message and halts the
protocol. Otherwise, SEM compares the signature
index in the request to its own signature counter. In
case of a mismatch, SEM replies to Alice with the
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lowest-numbered half-signature produced in the last
protocol run and aborts.

Next, SEM proceeds to verify the received public key
(SKY) based on Alice’s SAS root key contained in
the certificate. (If this is Alice’s initial request, the
signature counter is initialized to Having received
Alice’s request, SEM obtains Cert 4 (either from the
request or from local storage) and checks its status.
If revoked, SEM replies with an error message and
halts the protocol. Otherwise, SEM compares the
signature index in the request to its own signature
counter. In case of a mismatch, SEM replies to Alice
with the lowest-numbered half-signature produced
in the last protocol run and aborts. Specifically,
SEM checks that h" "(SKY%) = SK7%. In case of
a mismatch, SEM replies to Alice with the last
recorded half-signature and aborts the protocol.

Next, SEM signs the requested message with its
private key to produce: [Certa,m,i, SKi]9FM.
Other attributes may also be included in SEM’s
half-signature, e.g., a timestamp. SEM decrements
Alice’s signature counter, records the half-signature
and returns the latter to Alice.

In the above, SEM assures that — for a given SAS
certificate — exactly one signature is created for each
[i, SK] tuple. We refer to this property as the SAS
Invariant.

Step 3. Alice (who is assumed to be in possession
of SEM’s certificate at all times) verifies SEM’s half-
signature, records it and decrements her signature
counter. If SEM’s half-signature fails verification
or its attributes are wrong (e.g., it signs a different
message than m or includes an incorrect signature
counter j # i), Alice aborts the protocol and
concludes that a hostile attack has occurred.? (See
Section 7 below.)

Finally, Alice’s SAS signature on message m has the
following format:

SIG; = [Certa,m,i, SK',|SFM SK'~!

The second part, namely SKf;(l, is Alice’s half-
signature. ~As mentioned earlier, it is actually a
one-time signature: ha(SK' ') = SKY,.

Note that Alice must use her one-time keys in strict
sequence. In particular, Alice must not request a

20ur communication channel assumption rules out non-
malicious packets errors.

SEM half-signature using S’Kf[l unless, in the last
protocol run, she obtained SEM’s half-signature con-
taining SKY.

5.3 SAS Signature Verification

SAS signature verification comes in two flavors: light
and full. The particular choice depends on the veri-
fier’s trust model. Recall that the philosophy of SAS
is based on much greater (yet not unconditional) trust
placed in a SEM than in a regular user. If a verifier
(Bob) fully subscribes to this, i.e., trusts a SEM more
than Alice, he can chose light verification. Otherwise,
if Bob is equally suspicious of SEMs as of ordinary
users, he can choose full verification.
Light verification involves the following steps:

1. Obtain and verify® Certgma

2. Verify SEM’s
[Certa,m,i, SK4|9EM

RSA half-signature:

3. Verify Alice’s half-signature: ha(SK; ")

SK,

Full verification requires, in addition:

4. Verify Cert 4

5. Check that i <n

6. Verify Alice’s SAS root key: h'y ™ (SK’) = SK7

Note that light verification does not involve check-
ing Alice’s SAS certificate. Although this may seem
counter-intuitive, we claim that SAS signature for-
mat (actually SEM’s half-signature) already includes
Certa as a signed attribute. Therefore, for a verifier
who trusts the SEM, step 2 above implicitly verifies
Certy.

It is easy to see that, owing to the trusted nature
of a SEM and the SAS Invariant, light verification
is usually sufficient. However, if a stronger property
(such as non-repudiation) is desired, full verification
may be used.

5.4 State and Registration

As follows from the protocol description above, both
Alice and the SEM maintain state. Alice’s SAS state
amounts to the following:

Certa, Certspa, SK, 4, {SIG,, ...,SIG,_i_1}

3This may be done infrequently.
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The first three values are self-explanatory. The fourth
is Alice’s current signature counter, (), and the rest
is the list of previously generated signatures for the
same Certy. The state kept by the SEM (for each
user) is similar:

C’ertA,i, {SIG", ceey SIGn_Z‘_l}

The amount of state might seem excessive at first,
especially considering that some users might be on
small limited-storage devices. There are some opti-
mizations, however. First, we note that Alice can pe-
riodically off-load her prior signatures to some other
storage (e.g., to a workstation or a PC when the PDA
is charging). Also, it is possible to drastically re-
duce state maintenance for both users and SEMs if
successive signatures are accumulated. For example,
each SEM’s half-signature can additionally contain
the hash of the last prior SAS signature. This opti-
mization results in storage requirements comparable
to those of a traditional signature scheme.

Registration in SAS can be done either off- or on-
line. In the off-line case, SEM obtains Alice’s SAS
certificate via manual (local or remote) installation by
an administrator or by fetching it from the directory
service. To register on-line, Alice simply includes her
SAS certificate as an optional field in the initial SAS
signature request to the SEM. Before processing the
request as described above, the SEM checks if the
same certificate is already stored. If not, it installs in
the certificate database and creates a new user entry.
(See Figure 2.)

Incoming user Incoming admin

request request

A 2 A 4
I SEM Controller

'

Client Manager
(revocation checking)

Admin Interface

| . For. on-h.ne
registration

Time-stamping |q.. p SAS
(optional)

Certificate
and
signature db

| Crypto library (OpenSSL) |

Figure 2: SEM architecture

6 Analysis

We now consider the efficiency and security aspects
of the SAS signature method.

6.1 Efficiency

The cost of our signature protocol can be broken up
as follows:

1. Network overhead: round-trip delay between Al-
ice and SEM

2. SEM computation: signature computation plus
other overhead (including hash verification of
user’s one-time public key, database processing,
etc.)

3. User computation: verification of the SEM half-
signature and other (commitment to storage)
overhead.

Clearly, (1) and (3) are extra steps as compared with
a traditional signature method. The extra cost of
light signature verification (referring to the steps in
the previous section) is only in Step 3 which consists
of a single hash operation. Full verification costs an
additional certificate validation (Step 4) as well as
(n — 4) hash operations in Step 5.

6.2 Security Analysis

We claim that the SAS signature method achieves the
same security level as a traditional digital signature
scheme if SAS signature and verification protocols are
executed correctly. Due to space limitations, we only
present an informal security analysis.

To forge a SAS signature, an adversary can at-
tempt to:

TYPE 1: forge a SEM’s half-signature (i.e., an RSA
signature) or

TYPE 2: find a quantity SKJ) such that
H(SK%) = SK%. Recall that SK% is in-
cluded in SEM’s half-signature.

Clearly, a TYPE 1 attack is an attack on the un-
derlying signature scheme, i.e., RSA, and, as such, is
not specific to the SAS method. Therefore, we only
consider TYPE 2 attacks. However, finding SK
implies a successful attack on either the collision-
resistance or the one-wayness property of the under-
lying hash function ha(). Even we were to allow
the possibility of the adversary mounting a success-
ful TYPE 2 attack, the scheme remains secure if full
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verification is used. (Recall that full verification in-
cludes not only checking H(SK%) = SK' but also
WyTH(SKY) = SKR.)

We observe that, in any practical digital signature
scheme, a collision-resistant one-way hash function
is first applied to the message in order to produce
a fixed-length digest which is then signed. Hence,
a successful TYPE 2 attack on a SAS signature is,
at the same time, an attack on the digital signature
scheme.

6.3 Disputes

In case of a dispute between a signer (Alice) and a
verifier (Bob), the latter submits the disputed SAS
signature to an unbiased arbitrator who starts by ver-
ifying the following:

e Alice’s and SEM’s certificates are valid and cer-
tified by a CA.

e SEM’s half-signature is valid.

e Alice’s one-time key is a hash pre-image of the
value in SEM’s half-signature.

e The SAS root key in Cert 4 can be derived from
the one-time public key by repeated hashing.

This is essentially the full SAS signature verification
as described earlier. If any of the above steps fails,
the arbitrator rules in Alice’s favor. Otherwise, Bob
wins the dispute.

Assuming the above procedure succeeds, Alice is
asked to produce a different SAS signature with the
same one-time key (i.e., same one-time signature). If
Alice can come up with such a signature (meaning
that the message signed is different from the one in
the disputed signature), the arbitrator concludes that
Alice’s SEM cheated or was compromised. This con-
clusion is based on the apparent violation of the SAS
Invariant. If Alice fails to produce a different signa-
ture, the arbitrator concludes that Alice attempted
to cheat.

7 Denial of Service

The SAS signature protocol, unlike traditional signa-
ture schemes, involves multiple parties and commu-
nication. It is therefore subject to Denial of Service
(DoS) attacks. Since we assume that the communi-
cation channel is reliable (cf. Section 4.3), only hos-
tile DoS attacks are of interest. Also, our channel
assumption states that all messages eventually get

through; thus, attacks on the communication media
are ruled out.

There are two types of DoS attacks: user attacks
and SEM attacks. The purpose of a user attack is
to deny service to a particular user whereas the pur-
pose of a SEM attack is to deny service to all users
served by a SEM. User attacks can be further divided
into request and reply attacks. Request attacks in-
volves modifying (or injecting) a user’s signature re-
quest and a reply attack — modifying a SEM’s reply.

7.1 User Attacks

Suppose that an adversary (Eve) intercepts the sig-
nature request and mounts a request attack. In this
case, SEM receives a request that is perfectly legiti-
mate (well-formed) from its point of view. It proceeds
to sign it and send the signed reply back to Alice.
Clearly, Alice discards the reply because it contains
a signature for a different message. If Eve prevents
the reply from reaching Alice, she gains no advantage
since, as explained above, forging a signature requires
Eve to come up with a one-time public key which she
cannot do without breaking the hash function. Even
if the reply does not arrive immediately, according to
our communication assumption, it eventually reaches
Alice who promptly detects an attack.

A slight variation on the above occurs when Eve
has in her possession the last SAS signature gener-
ated by Alice. In this case, Eve can contact Alice’s
SEM with a well-formed request and without Alice’s
knowledge, i.e., Alice is off-line. However, this attack
results in the same outcome as the above. This is be-
cause, eventually, Alice requests a new signature and
SEM replies with the last (signed) reply. Alice, once
again, detects an attack.

We note that these attacks can be prevented: one
way to do so is for Alice not to reveal her i-th signa-
ture until (i — 1)-st signature is computed. In other
words, every other signature would be used strictly
for this purpose. Then, if we suppose that Alice-SEM
communication is private, revealing STG; to Bob (or
Eve) is safe since a successful request to Alice’s SEM
would require knowledge of SK;_; which Alice does
not reveal until the next signature is requested. Yet
another solution is to use a second, different hash
chain for the sole purpose to authenticate Alice’s re-
quests to the SEM.

All in all, request attacks, while possible, are de-
tected by the SAS signature protocol due to its “fail-
stop” property: any manipulation of the signature
request is detected by the user who can then invali-
date its own certificate.
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User reply attacks are comparatively less effective.
If Eve modifies SEM’s reply, short of forging an RSA
signature, Alice detects that the reply is not what she
expected and continues re-transmitting her signature
request.

7.2 SEM Attacks

By virtue of serving a multitude of regular users, a
SEM is a natural DoS attack target. This is not
unique to SAS. For instance, it is easy to mount an
effective DoS attack against an OCSP [1] (or even
worse, a TSP [16]) server. It suffices for the adversary
to flood the victim server with well-formed requests,
i.e., requests for which the server is “authoritative” in
OCSP. Since the server must digitally sign all replies,
it will slowly grind to a halt.

In SAS, it is appreciably more difficult for the ad-
versary to launch this type of an attack. The stateful
nature of the SEM requires each signature request to
be well-formed: it must contain the expected value
of the current one-time public-key, i.e., the pre-image
of the previously used public-key. All other requests
are promptly discarded.

Therefore, in order to force the SEM to perform
any heavy-weight tasks (of which signing is really the
only one), the adversary must mount simultaneous
user request attacks on as many users as possible thus
hoping to flood the SEM. However, even if this were
possible, the attack would quickly subside since the
SEM will only perform a single signature operation
per user before demanding to see a pre-image (next
one-time public key). As we already established, find-
ing the pre-image of the last signed one-time public
key is computationally infeasible.

7.3 Loss of State

As SAS requires a non-trivial amount of state to be
maintained by both users and SEMs, we need to con-
sider the potential disaster scenarios that result in a
loss of state.

Suppose that Alice looses all records of her prior
signatures along with the signature counter. We fur-
ther assume that she still has possession of her SAS
certificate and the secret hash chain seed. Since these
two values are fairly long-term, it is reasonable for Al-
ice to store them in more permanent storage. Because
of the “amnesia”, Alice will attempt to obtain the ini-
tial signature from the SEM. Since SEM has retained
all relevant state, it will reply with the last half-
signature (including SEM’s signature counter) gener-
ated for Alice’s SAS certificate. Once she verifies the
reply, Alice will realize her loss of state and resort to

off-line means. However, if a malicious SEM is aware
of Alice’s loss of state, it can use this to its advantage
by forging with impunity Alice’s signatures.

If Alice looses her entire storage, including the SAS
certificate, the consequences are not particularly dire.
The SEM will simply keep state of Alice’s “orphan”
certificate until it eventually expires.

Any loss of SEM’s state is much more serious. Most
importantly, if the SEM looses all state pertaining to
Alice’s SAS certificate, the SAS Invariant property
can no longer be guaranteed. (Consider, for example,
malicious Alice re-establishing state of her SAS cer-
tificate on the SEM and then obtaining n signatures
with the same hash chain.)

7.4 SEM Compromise

SEM compromise is clearly the greatest risk in SAS.
The adversary who gains control of a SEM can
un-revoke or refuse to revoke SAS user certificates.
Moreover, it becomes possible to produce fraudulent
user signatures: since state is kept of all prior SAS
signatures (corresponding to active SAS certificates),
the adversary can sign on behalf of Alice for each
(SK'y, SK';") pair found in SEM’s storage.

Nonetheless, a defrauded SEM user can still have
recourse if she faithfully keeps state of all prior SAS
signatures. Referring to the SAS dispute resolution
procedure, when an arbitrator is presented with two
distinct and verifiable SAS signatures for the same
(SK', SK';") pair, he concludes that the SEM has
attempted to cheat.

7.5 Suicide in SAS

In order to provide rapid and effective response to
potential attacks, SAS includes a way for the user
to “self-revoke” a SAS certificate. This is easily ob-
tained by placing a new value (X.509 extension) in
the SAS certificate. This value, referred to as the
“suicide hash”, is the hash of a randomly selected
secret quantity generated by Alice when composing
her certificate request. To self-revoke the certificate,
Alice simply communicates the corresponding suicide
pre-image to the SEM and the CA. As a result, the
former simply stops honoring any further signature
requests (pertaining to Alice’s certificate) while the
latter places a reference to the said certificate on the
next CRL.

A similar technique has been suggested (with the
value revealed by the CA instead) by Micali [17] as
part of a proposal for an efficient revocation scheme.
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8 Implementation and Experi-
ments

To better understand the implications of using SAS
and to obtain valuable experimental and practical
data, we implemented the SAS scheme, first as a
limping proof-of-concept prototype and, later, as a
fully functional and publicly available package.

The implementation, for the most part, follows the
protocol as presented in Section 5. The SAS certifi-
cate issuance is done strictly off-line: all users obtain
their SAS certificates from the CA as described in
Section 5.1. The newly issued certificates are either
transferred to SEM off-line or piggybacked onto each
user’s initial SAS signature request. We limit our im-
plementation discussion owing to space limitations;
further details, including the SAS signature and SAS
certificate formats can be found in Appendix A.

8.1 SAS Application Example: Eu-

dora Plug-in

To demonstrate the ease and utility of the SAS sig-
natures, we developed a plug-in (on top of the SAS
user library [18]) for the popular Eudora [19] mailer.

When composing email, the sender simply clicks on
the plug-in button. When ready to send, the plug-
in reads the user’s SAS certificate and extracts the
SEM’s address. It then communicates with the SEM
to obtain a SAS signature on the email message. The
resulting signed email is verified automatically by the
Eudora plug-in on the receiver’s side. Even if the re-
ceiver does not use Eudora, the SAS-signed email can
be verified by any S/MIME capable email client such
as Netscape Messenger or Microsoft Outlook. The
verification, however, requires the receiver (verifier)
to install a stand-alone SAS email verifier program.
This program is registered as the viewer for the new
MIME type (¢ ‘x.SAS-signature’’).

Figure 3 shows a screen snapshot of the Eudora
message composition window when the user is ready
to send a signed email. It is essentially the same as
the normal Eudora screen except for the small SAS
button at the toolbar along the top of the window.
Figure 4 depicts a screen snapshot of the Eudora
mailer showing a SAS-signed email message being re-
ceived. The user is presented with a signature icon on
the message screen; clicking on it causes the mailer to
invoke the plug-in’s verification function the output
of which is displayed in the Figure 5.

To conserve space we omit the depiction of a user
trying to sign email with a revoked certificate. In this
case, the plug-in displays an error message informing
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Figure 4: Verifier plug-in: signed email

the user of his certificate’s demise. Further details on
the Eudora plug-in can be found in Appendix A.

8.2 Experimental Results

As emphasized in the introduction, one of the main
goals of SAS is to off-load the bulk of signature com-
putation from the weak user to the powerful SEM. To
validate the goals and experiment with the SAS im-
plementation, we ran a number of tests with various
hardware platforms and different RSA key sizes.

All experiments were conducted over a 100 Mbit
Ethernet LAN in a lab setting with little, if any, ex-
traneous network traffic. All test machines ran Linux
version 2.2 with all non-essential services turned off.
The hardware platforms ranged from a measly 233-
MHz PI (Pentium I) to a respectable 1.2-GHz PIV
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(Pentium IV). Note that we selected the lowest-end
platform conservatively: only very high-end PDAs
and palmtops approach 200-MHz processor speed;
most are in the sub-100Mhz range. Our choice of the
SEM platform is similarly conservative: a 933-MHz
PIII. (At the time of this writing, 1.7-GHz platforms
are available and affordable.)

Processor Key length (bits)

1024 | 2048 4096 8192
PI-233 MHz 40.3 | 252.7 | 1741.7 | 12,490.0
PIII-500 MHz | 14.6 | 85.6 562.8 | 3,873.3
PIII-700 MHz | 9.2 | 55.7 | 377.8 | 2,617.5
PIII-933 MHz 7.3 | 439 294.7 | 2,052.0
PIV-1.2 GHz 9.3 | 587 | 401.2 | 2,835.0

Table 1: Plain RSA signature timings (ms)

First, we present in Table 8.2 plain RSA timings
conducted with OpenSSL on the five hardware plat-
forms. Table 8.2 illustrates the SAS timing measure-
ments on the four user platforms with the SEM dae-
mon running on a 933-MHz PIII. All SAS timings
include network transmission time as well as SEM
and user processing times. Finally, Table 8.2 shows
the LAN round-trip communication delay between
the user and the SEM, for different key sizes. The
size of the signature request is determined by the di-
gest size of the hash function, whereas, SEM’s replies
vary from roughly 164 bytes for 1024-bit RSA key to
around 1,060 bytes for an 8K-bit RSA key.

We purposely used fairly conservative platforms for
both the SEM and test users. The slowest user plat-

form is a 233-MHz Pentium I laptop which is signif-
icantly faster than a typical PDA or a cell phone.
The motivation was to show that, even a relatively
fast user CPU, the speedup from SAS is appreciable.
Clearly, a more realistic scenario would involve, for
example, a 60- to 100-MhZ PDA as the user platform
and a 1.7- to 2-GhZ PIV as a SEM.

As is evident from Table 8.2, all four user platforms
experience noticeable speed-up as a result of using
SAS, as compared with plain RSA. It is not surpris-
ing that the two low-end clients (233-MHz and 500-
MHz) obtain a factor 4 to 6 speed-up depending on
the key size. It is interesting, however, that the seem-
ingly most powerful client platform (1.2-GHz PIV)
also experiences a small speed-up. However, looking
at Table 8.2, it becomes clear that the 1.2-GHz PIV
is not the fastest platform after all. The explanation
for this oddity rests with the chip maker.

Processor Key length (bits)
1024 | 2048 | 4096 8192
PI-233 MHz 13.3 | 524 | 322.5 | 2,1434
PIII-500 MHz 9.1 | 46.3 | 302.0 | 2,070.2
PIII-700 MHz 8.5 | 45.1 | 299.0 | 2,059.6
PIV-1.2 GHz 8.5 | 45.4 ] 299.0 | 2,061.0

Table 2: SAS signature timings (ms)

To summarize, as Tables 8.2 and 8.2 illustrate, de-
spite large variances in the four clients’ CPU speeds,
the difference in SAS sign time is very small. More-
over, the SAS sign time is only slightly higher than
the corresponding value for the SEM (PIII-933 MHz)
in Table 8.2, meaning that — communication delay
aside — a SAS client can sign almost as fast as the
SEM. The reason is that, to obtain a SAS signature, a
user’s cryptographic computation (which dominates
the overall time) amounts to message hashing and
signature verification. Hashing is almost negligible
as compared to public key operations. RSA signa-
ture verification is also quite cheap in comparison to
signing since we use small public exponents.

Processor Key length (bits)
1024 | 2048 | 4096 | 8192
PI-233 MHz 0.6 0.7 1.1 1.7
PIII-500 MHz | 0.4 0.5 0.8 1.2
PIII-700 MHz | 0.1 0.2 0.2 0.3
PIV-1.2 GHz 0.4 0.5 0.8 1.2

Table 3: Network round-trip delay (ms)
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9 Benefits and Drawbacks

In summary, the SAS signature scheme offers several
important benefits as described below: Efficient
Signatures. As follows from the protocol descrip-
tion and our experimental results, the SAS signature
scheme significantly speeds up signature computa-
tion for slow, resource-limited devices. Even where
speed-up is not as clearly evident (e.g., with small
key sizes), SAS signatures conserve CPU resources
and, consequently, power, for battery-operated
devices.

Fast revocation. To revoke a SAS certificate, it
is sufficient for the CA to communicate to the cor-
rect SEM. This can be achieved, for example, with
CA simply issuing a new CRL and sending it to the
SEM. Thereafter, the SEM will no longer accept SAS
signature requests for the revoked certificate.

We remark that, with traditional signature schemes,
the user who suspects that his key has been com-
promised can ask the CA to revoke the certificate
binding this key to the user. However, the adversary
can continue ad infinitum to use the compromised
key and the verification burden is placed on all
potential verifiers who must have access to the latest
CRL. With SAS, once the SEM is notified of a
certificate’s revocation, the adversary is no longer
able to interact with the SEM to obtain signatures.
Hence, potential compromise damage is severely
reduced.

More secure signatures. Since only a SEM
performs real RSA public key operations (key gen-
eration, signature computation), it can do so with
stronger RSA keys than would otherwise be used by
the users. Indeed, a small PDA-like device is much
less likely to generate high-quality (or sufficiently
long) RSA factors (p,q) and key-pairs than a much
more powerful and sophisticated SEM.

Signature Causality. Total order can be imposed
over all SAS signatures produced by a given user.
This is a direct consequence of the hash chain
construction and the SAS Invariant. In other
words, total ordering can be performed using the
monotonically increasing signature counter included
in each SAS signature.

Dispute Resolution. Signature Causality can
be used to provide unambiguous dispute resolution
in case of private key compromise. Recall that
the compromise of a private key in a traditional

signature scheme results in chaos. In particular, all
prior signatures become worthless unless the use of
a secure timestamping service is explicitly mandated
for all signer and signatures. In SAS, once the time
of compromise is established, signatures can be easily
sorted into pre- and post-revocation piles.

Attack Detection. As discussed in Section 7,
an adversary can succeed in obtaining a single
fraudulent half-signature (not a full SAS signature)
by substituting a message of its own choosing
in the user’s signature request. This essentially
closes the door for the adversary since it is unable
to obtain further service (short of inverting the
hash function). The real user will detect that
an attacks has taken place the next time when it
tries to run the SAS signature protocol with its SEM.

Limited Damage. Even if the entire SAS hash
chain is compromised (i.e., an adversary obtains
the seed of the hash chain), the damage is con-
tained since the adversary can generate at most n
signatures. Furthermore, a user whose hash chain
is compromised will detect the compromise the
very next time she attempts to contact the SEM.
(This is because the SEM will reply with its last
half-signature ostensibly computed for the requesting
user.)

Alas, the SAS scheme has some notable drawbacks
as well:
e Fach SEM is a single point of failure and a
performance bottleneck for the users it serves.

o As discussed in Section 7, a SEM signs (with RSA,
to produce its half-signature) a response to every
well-formed signature request. This feature can be
exploited by an adversary in order to mount a DoS
attack. However, even the best attack can succeed
in making a SEM sign at most once for each user it
serves. Of course, an adversary can still flood any
SEM with malformed requests which can certainly
render a SEM unavailable to legitimate users.

e Unlike other mediated or multi-party signature
methods (such as mRSA or 2-party DSA), SAS
signatures are not compatible with any other basic
signature type. In other words, SAS signatures are
not transparent to verifiers. Therefore, all potential
verifiers must avail themselves of at least the SAS
verification method.

e It is possible, but neither easy nor elegant, for
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a user to switch among different SEMs in SAS.
One way is to have multiple SAS certificates; one
for a distinct SEM. Another way is to use on-line
hand-over of a SAS certificate among two SEMs.
Neither solution is particularly attractive due to
the difficulty of replication of a statfule server. (In
mRSA [4], for example, a user can swich among
SEMs transparently, where SEM is stateless. )

e SAS involves on-going state retention for regular
users and SEMs. This burden is particularly heavy
for SEMs (users can off-load their state periodically)
since they must keep complete signature histories for
all users served.
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Appendix A: SAS Implementa-
tion Details

A.1 SAS Signature Format

The well-known PKCS#7 [20] standard defines a gen-
eral cryptographic message syntax for digital signa-
tures. In it, SignerInfor includes an optional set
of signed attributes as well as an optional set of un-
signed attributes. This flexibility allows us to easily
extend the PKCS#7 signature syntax to accommo-
date SAS signatures. This is because a SAS signature
can be viewed as a regular public key signature with
an appended extra value, i.e., the hash pre-image.
The format changes are only a few new
requirements for authenticatedAttributes and

unauthenticatedAttributes of the SignerInfor
field. In a SAS signature, SignerInfor is the same
as in plain PKCS#7, except:

e authenticatedAttributes:
this field is not OPTIONAL, but MANDA-
TORY. It must contain, at a minimum, two more
attributes aside from those set in PKCS#7:

— SAS_issuer_sn: IssuerAndSerialNumber —
specifies the SAS client’s certificate by is-
suer name and issuer-specific serial number

— SAS_signed_token_index: INTEGER -
specifies the SAS client signed one-time sig-
nature index (counter)

— SAS signed_token_value: OCTET STRING
— specifies the SAS client signed one-time
public key

Note that PKCS#7 requires
issuerAndSerialNumber in SignerInfo to
identify signer’s key. In SAS, this corresponds
to SEM’s key. Therefore, we require another
field SAS_issuer_sn to identify the user’s SAS
certificate containing the SAS root key. The
signed token is not placed into ContentInfo so
that the message digest handling is the same
as with any other public key signature type.
Moreover, the token can be extracted from
PKCS#7 independently, if necessary.

e unauthenticatedAttributes:

this field is not OPTIONAL, but MANDA-
TORY. It must contain:

— SAS_preimage_token_value: OCTET
STRING - specifies the SAS user’s one-
time hash pre-image of the signed token
specified in SAS_signedtoken_value. This
attribute is unsigned. It is inserted by
the user when the SEM’s half-signature is
received and verified.

Because of format compatibility, a SAS signature can
be shipped as a normal PKCS#7 signature. How-
ever, the verification method is obviously different.
The normal PKCS#7 verification routines can only
verify the SEM half-signature (i.e., RSA public key

signature).
The extra step in (light) verification of
a SAS signature is the comparison of the

hash of SAS preimage token value and the
SAS_signed_token_value assuming light verification
is used. Otherwise, as described above, the verifier
checks the validity of SAS_signed_token_value and
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SAS_signed_token_index by computing the iterative
hash and comparing the result with the SAS root
key in the signer’s SAS certificate.

The fact that two parties participate in signing
result in a semantic issue when SAS signatures are
used in conjunction with S/MIME. Most S/MIME
applications enforce a policy requiring the sender of
the message (as shown in the RFC822 From: field)
to match the e-mail address in the signer certificate.
Unfortunately, in SAS, the sender is the holder of the
SAS certificate, e.g., alice@wonderland.com. Whereas,
the “signer” is the SEM, e.g., sem@wonderland.com.
Therefore, a SAS verifier should be aware of the pres-
ence of the unsigned attribute and use the proper
email address in comparison.

A.2 SAS Certificate

To support SAS attributes, we extended X509v3 han-
dling [21] in the popular Openssl library [22]. In ad-
dition to the usual X509v3 fields, a SAS certificate
also certifies the following:

e SASHashType: DigestAlgorithmIdentifier —
identifies the hash algorithm used in generating
the hash chain;

e SASPublicKeyIdentifier: OCTET STRING
SAS root key in the hash-chain.

e SASPublicKeyPara:
hash-chain.

INTEGER — length of the

e SASServerName: STRING — SEM’s host name.
This field indicates the location of SEM and has
no security meaning.

e SASSerialNumber: INTEGER — SEM’s certificate
serial number. (Here it is assumed that the SEM
and the user share the same CA). Uniquely iden-
tifies SEM’s certificate and the corresponding
public key.

A.3 Eudora Plug-in Details

We implemented the SAS plug-in as two email trans-
lators defined in Eudora’s plug-in API [19]. Specif-
ically, SAS signing is a @Q4-Transmission translator
and SAS verification is an On-Display translator.

SAS signing translator is invoked when Eudora
is ready to send email and is fed with the entire
email message, including its MIME header. When
SAS signature protocol terminates, the whole SAS
signature in PKCS#7 format is appended to the
email body as an attachment with the MIME sub-
type ‘ ‘x.SAS-signature’’.

SAS verification translator is called when Eudora
is about to display a SAS-signed email. As in tradi-
tional signature verification, a certificate chain must
be at hand. Our plug-in allows users to specify the
root CA certificate, assuming, of course, that the
SEM and the SAS client share the same certificate
issuer. It is easy to build a chain by extracting SEM
and client’s certificate from the PKCS#7 signature.
In this implementation, we chose not to adopt opaque
signing. If the signature is invalid, an error message
window is popped up while the original email body
is still displayed.

Since SAS signature verification is different from
normal S/MIME, non-Eudora applications, like
Netscape or Outlook, cannot verify it without a spe-
cial verification program. We provide such a stand-
alone

Appendix B: Related Work on
Certificate Revocation

e CRLs and A-CRLs: Certificate Revocation Lists
are the most common way to handle certificate revo-
cation. The Validation Authority (VA) periodically
posts a signed list of all revoked certificates. These
lists are placed on designated servers called CRL dis-
tribution points. Since these lists can get quite long,
a VA may alternatively post a signed A-CRL which
only contains the list of revoked certificates since the
last CRL was issued. When verifying a signature on
a message, the verifier checks that, at the time that
the signature was issued, the signer’s certificate was
not on the CRL.

e OCSP: The Online Certificate Status Protocol
(OCSP) [1] improves on CRLs by avoiding the trans-
mission of long CRLs to every user and by providing
more timely revocation information. The VA sends
back a signed response indicating whether the spec-
ified certificate is currently revoked. When verifying
a signature, the verifier sends an OCSP (certificate
status request) query to the VA to check if the en-
closed certificate is currently valid. The VA answers
with a signed response indicating the certificate’s re-
vocation status. Note that OCSP prevents one from
implementing stronger semantics: it is impossible to
ask an OCSP VA whether a certificate was valid at
some time in the past.

e Certificate Revocation Trees: Kocher [23] sug-
gested an improvement over OCSP. Since the VA is
a global service, it must be sufficiently replicated
to handle the load of all validation queries. This
means the VA’s signing key must be replicated across
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many servers which is either insecure or expensive
(VA servers typically use tamper-resistance to pro-
tect the VA’s signing key). Kocher’s idea is to have
a single highly secure VA periodically post a signed
CRIL-like data structure to many insecure VA servers.
Users then query these insecure VA servers. The data
structure (CRT) proposed by Kocher is a hash tree
where the leaves are the currently revoked certificates
sorted by serial number The root of the hash tree is
signed by the VA.

A user wishing to validate a certificate issues a

query to the closest VA server. Any insecure VA
can produce a convincing proof that the certificate
is (or is not) on the CRT. If n certificates are cur-
rently revoked, the length of the proof is O(logn). In
contrast, the length of the validity proof in OCSP is
O(1).
e Skip-lists and 2-3 trees: One problem with
CRTs is that, every time a certificate is revoked, the
entire CRT must be recomputed and distributed in its
entirety to the various VA servers. A data structure
allowing for dynamic updates would solve this prob-
lem since the secure VA would only need to send small
updates to the data structure along with a signature
on the new root of the structure. Both 2-3 trees pro-
posed by Naor and Nissim [24] and skip-lists proposed
by Goodrich [25] are natural data structures for this
purpose. Additional data structures were proposed
in [26]. When a total of n certificates are already re-
voked and k new certificates must be revoked during
the current time period, the size of the update mes-
sage to the VA servers is O(klogn) (as opposed to
O(n) with CRTs). The proof of certificate’s validity
is O(logn), same as with CRTs.
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Abstract

We present a new approach to fast certificate re-
vocation centered around the concept of an on-line
semi-trusted mediator (SEM). The use of a SEM in
conjunction with a simple threshold variant of the
RSA cryptosystem (mediated RSA) offers a num-
ber of practical advantages over current revocation
techniques. Our approach simplifies validation of
digital signatures and enables certificate revocation
within legacy systems. It also provides immediate
revocation of all security capabilities. This paper
discusses both the architecture and implementation
of our approach as well as performance and compat-
ibility with the existing infrastructure. Our results
show that threshold cryptography is practical for
certificate revocation.

1 Introduction

We begin this paper with an example to illustrate
the premise for this work. Consider an organization
— industrial, government or military — where all em-
ployees (referred to as users) have certain authori-
ties and authorizations. We assume that a modern
Public Key Infrastructure (PKI) is available and all
users have digital signature, as well as encryption,
capabilities. In the course of performing routine ev-
eryday tasks users take advantage of secure applica-
tions such as email, file transfer, remote log-in and
web browsing.

Now suppose that a trusted user (Alice) does some-
thing that warrants immediate revocation of her se-

*This work is supported by the Defense Advanced Project
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tComputer Science Department, Stanford University.

{Department of Information and Computer Science, Uni-
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curity privileges. For example; Alice might be fired,
or she may suspect that her private key has been
compromised. Ideally, immediately following revo-
cation, Alice should be unable to perform any se-
curity operations and use any secure applications.
Specifically, this means:

— Alice cannot read secure (private) email. This
includes encrypted email that is already resid-
ing on Alice’s email server. Although encrypted
email may be basically delivered (to Alice’s email
server), she cannot decrypt it.

— Alice cannot generate valid digital signatures on

any further messages. (However, signatures gen-

erated by Alice prior to revocation may need to
remain valid.)

Alice cannot authenticate herself to corporate

servers.

In Section 7, we discuss current revocation tech-
niques and demonstrate that the above require-
ments are impossible to satisfy with these tech-
niques. Most importantly, current techniques do not
provide immediate revocation.

1.1 The SEM architecture.

Our approach to immediate revocation of security
capabilities is called the SEM architecture. It is easy
to use and its presence 1s transparent to peer users
(those that encrypt messages and verify signatures).
The basic idea is as follows:

We introduce a new entity, referred to as a SEM
(SEeurity Mediator). A SEM is an online semi-
trusted server. To sign or decrypt a message, Al-
1ce must first obtain a message-specific token from
the SEM. Without this token Alice cannot use her
private key.t To revoke Alice’s ability to sign or de-

I The exact description of the token is in Section 2.
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crypt, the security administrator instructs the SEM
to stop 1ssuing tokens for Alice’s public key. At that
instant, Alice’s signature and/or decryption capa-
bilities are revoked. For scalability reasons, a SEM
serves many users.

We emphasize that the SEM architecture is trans-
parent to peer users: with SEM’s help, Alice can
generate a standard RSA signature, and decrypt
standard messages encrypted with her RSA public
key. Without SEM’s help, she cannot perform ei-
ther of these operations. The SEM architecture is
implemented using threshold RSA [3] as described
in section 2.

To experiment with this architecture we imple-
mented it using OpenSSL [12]. SEM is implemented
as a daemon process running on a server. We de-
scribe our implementation, the protocols used to
communicate with the SEM, and give performance
results in Sections b and 6.

We also built a plug-in for the Eudora client en-
abling users to send signed email. All signatures are
generated with SEM’s help (see [15]). Consequently,
signing capabilities can be easily revoked.

1.2 Decryption and signing in the SEM
architecture

We now describe in more detail how decryption and
signing is done in the SEM architecture:

— Decryption: suppose Alice wishes to decrypt an
email message using her private key. Recall that en-
crypted email is composed of two parts: (1) a short
header containing a message-key encrypted using
Alice’s public key, and (2) the body contains the
email message encrypted using the message-key. To
decrypt, Alice first sends the short header to her
SEM. SEM responds with a short token. This to-
However, it
contains no useful information to anyone but Alice.
Hence, communication with the SEM does not have
to be protected or authenticated. We note that in-
teraction with the SEM is fully managed by Alice’s
email reader and does not require any intervention
on Alice’s part. This interaction does not use Al-
ice’s private key. If Alice wants to read her email
offline, the interaction with the SEM takes places at
the time Alice’s email client downloads Alice’s email
from the email server.

ken enables Alice to read her email.

— Signatures: suppose Alice wishes to sign a mes-
sage using her private key. She sends a hash of the
message to the SEM which, in turn, responds with
a short token enabling Alice to generate the signa-
ture. As with decryption, this token contains no
useful information to anyone but Alice; therefore,
the interaction with the SEM is not encrypted or
authenticated.

Note that all interaction with the SEM involves very
short messages.

1.3 Other benefits of using a SEM

Our initial motivation for introducing a SEM is to
enable immediate revocation of Alice’s key. We
point out that the SEM architecture provides two
additional benefits over standard revocation tech-
niques: (1) simplified signature validation, and (2)
enabling revocation in legacy systems. These bene-
fits apply when the following semantics for validat-
ing digital signatures are used:

Binding signature semantics: a digital signature
is considered valid if the certificate associated with
the signature was valid at the time the signature
was issued.

A consequence of binding signature semantics is
that all signatures issued prior to certificate revo-
cation are valid. Binding semantics are natural in
business contracts. For example, suppose Alice and
Bob enter into a contract. They both sign the con-
tract at time 7. Bob begins to fulfill the contract
and incurs certain costs in the process. Now, sup-
pose at time 7”7 > T', Alice revokes her own certifi-
cate. Is the contract valid at time 7”7 Using binding
semantics, Alice is still bound to the contract since
it was signed at time 7" when her certificate was still
valid. In other words, Alice cannot nullify the con-
tract by causing her own certificate to be revoked.

(We note that binding semantics are inappropriate
in some scenarios. For example, if a certificate 1s
obtained from a CA under false pretense, e.g., Alice
masquerading as Bob, the CA should be allowed to
declare at any time that all signatures ever issued
under that certificate are invalid.)

Implementing binding signature semantics with ex-

isting revocation techniques is complicated, as dis-
cussed in Section 7. Whenever Bob verifies a signa-
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ture generated by Alice, Bob must also verify that
Alice’s certificate was valid at the time the signature
was 1ssued. In fact, every verifier of Alice’s signa-
ture must perform this certificate validation step.
However, unless a trusted timestamping service is
involved in generating all of Alice’s signatures, Bob
cannot trust the timestamp provided by Alice in her
signatures.

Implementing binding semantics with the SEM ar-
chitecture is trivial. To validate Alice’s signature, a
verifier need only verify the signature itself. There
is no need to check the status of Alice’s certificate.?
Indeed, once Alice’s certificate i1s revoked she can
no longer generate valid signatures. Therefore, the
mere existence of the signature implies that Alices’s
certificate was valid at the time the signature was
issued.

The above discussion brings out two additional ben-
efits of a SEM over existing revocation techniques,
assuming binding semantics are sufficient.

— Simplified signature validation. Verifiers need not
validate the signer’s certificate. The existence of a
(verifiable) signature is, in itself, a proof of signa-
ture’s validity.

— Enabling revocation in legacy systems. Consider
legacy systems doing signature verification. Often,
such systems have no certificate validation capa-
bilities. For example, old browsers (e.g., Netscape
3.0) verify server certificates without any means for
checking certificate revocation status. In SEM ar-
chitecture, certificate revocation is provided with-
out any change to the verification process in these
legacy systems. (The only aspect that needs chang-
ing is the signature generation process. However,
we note that, often, only a few entities generate sig-
natures, e.g., CAs and servers.)

2 Mediated RSA

We now describe in detail how the SEM interacts
with users to generate tokens. The proposed SEM
architecture 1s based on a variant of RSA which

we call Mediated RSA (mRSA). The main idea in

2We are assuming here that revocation of Alice’s key is
equavalent to revocation of Alice’s certificate. In general,
however, Alice’s certificate may encode many rights, not just
the right to use her key(s). It is then possible to revoke only
some of these rights while not revoking the entire certificate.

mRSA is to split each RSA private key into two
parts using threshold RSA [3]. One part is given to
a user while the other is given to a SEM. If the user
and the SEM cooperate, they employ their respec-
tive half-keys in a way that is functionally equivalent
to (and indistinguishable from) standard RSA. The
fact that the private key is not held in its entirety by
any one party is transparent to the outside world,
i.e., to the those who use the corresponding public
key. Also, knowledge of a half-key cannot be used
to derive the entire private key. Therefore, neither
the user nor the SEM can decrypt or sign a mes-
sage without mutual consent. (A single SEM serves
a multitude of users.)

2.1 mRSA in detail

Public Key. Asin RSA, each user (U;) has a pub-
lic key EK; = (ny, e;) where the modulus n; is prod-
uct of two large primes p; and ¢; and e; is an integer
relatively prime to ¢(n;).

Secret Key. As in RSA, there exists a corre-
sponding secret key DK; = (n;, d;) where d;xe; = 1
(mod ¢(n;)). However, as mentioned above, no one
has possession of d;. Instead, d; is effectively split
into two parts di and d;°™ which are held by the
user U; and a SEM, respectively. The relationship
among them is:

di = d&i°" + df mod ¢(n)

mRSA Key Setup. Recall that, in RSA,
each wuser generates its own modulus n; and
a public/secret key-pair. In mRSA, a trusted
party (most likely, a CA) takes care of all key
setup. In particular, it generates a distinct set:
{pi, @i, ei, and d;,d3*™} for each user. The first
four are generated in the same manner as in stan-
dard RSA. The fifth value, d{°™, is a random inte-
ger in the interval [1,n;]. The last value is set as:

df = d; — diem.

After CA computes the above values, d°™ is se-
curely communicated to a SEM and d} — to the user
U;. The details of this step are elaborated in Sec-
tion 5.

mRSA Signatures. A user generates a signature
on a message m as follows:
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1. The user U; first sends a hash of the message m
to the appropriate SEM.

— SEM checks that U; is not revoked and, if
so, computes a partial signature PSge, =
m%"" (mod n;) and replies with it to the user.
This PSsem 1s the token enabling signature
generation.

— concurrently, U; computes PS, = m®% (mod

2. U; receives PSgep, and computes m’ = (PSsep, *

PSy)¢ (modng). If m’ = m, the signature is set

to: (PSsem * PSy) =m%  (mod n;).

Note that in Step 2 the user U; validates the re-
sponse from the SEM. Signature verification is iden-
tical to that in standard RSA.

mRSA Encryption. The encryption process is
identical to that in standard RSA. (In other words,
ciphertext is computed as ¢ = m® (modn;) where
m is an appropriately padded plaintext, e.g., using
OAEP.) Decryption, on the other hand, is very sim-
ilar to signature generation above.

1. upon obtaining an encrypted message ¢, user U;
sends it to the appropriate SEM.

— SEM checks that U; is not revoked and, if
so, computes a partial cleartext PClep =
¢ (modn;) and replies to the user.

— concurrently, U; computes PC, = % (mod

2. U; receives PClep and computes ¢ = (PClsep *

PCy)% (modn;). If ¢/ = ¢, the cleartext mes-

sage is: (PCsem x PCYy) = el

2.2 Notable Features

As mentioned earlier, mRSA is only a slight mod-
ification of the RSA cryptosystem. However, at a
higher, more systems level, mRSA affords some in-
teresting features.

CA-based Key Generation. Recall that, in
RSA, a private/public key-pair is typically gener-
ated by its intended owner. In mRSA the key-pair is
typically generated by a CA, implying that the CA
knows the private keys belonging to all users. In the
global Internet this is clearly undesirable. However,
in a medium-sized organization this “feature” pro-

vides key escrow. For example, if Alice is fired, the
organization can still access her work-related files
by obtaining her private key from the CA.

If key escrow 1s undesirable, it is easy to extend the
system 1n a way that no entity ever knows Alice’s
private key (not even Alice or the CA). To do so, we
can use a technique due to Boneh and Franklin [2]
to generate an RSA key-pair so that the private key
is shared by a number of parties since its creation
(see also [4]). This technique has been implemented
in [8]. Tt can be used to generate a shared RSA key
between Alice and the SEM so that no one knows
the full private key. Our initial implementation does
not use this method. Instead, the CA does the full
key setup.

Immediate Revocation. The notoriously dif-
ficult revocation problem is greatly simplified in
mRSA. In order to revoke a user’s public key, it suf-
fices to notify that user’s SEM. Each SEM merely
maintains a list of revoked users which is consulted
upon every service request. Qur implementation
uses standard X.509 Certificate Revocation Lists
(CRL’s) for this purpose.

Transparency. mRSA is completely transparent
to those who encrypt data for mRSA users and
those who verify signatures produced by mRSA
users. To them, mRSA appears indistinguishable
from standard RSA. Furthermore, mRSA certifi-
cates are identical to standard RSA certificates.

Coexistence. mRSA’s built-in revocation ap-
proach can co-exist with the traditional, explicit
revocation approaches. For example, a CRL- or a
CRT-based scheme can be used in conjunction with
mRSA in order to accommodate existing implemen-
tations that require verifiers (and encryptors) to

perform certificate revocation checks.

CA remains an off-line en-
tity. mRSA certificates, along with private half-keys
are distributed to the user and SEM-s in an off-
line manner. This follows the common certificate
issuance and distribution paradigm. In fact, in our
implementation (Section 5) there is no need for the
CA and the SEM to ever communicate directly.

CA Communication.
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No Authentication. mRSA does not require any
explicit authentication between a SEM and a user.
Instead, a user implicitly authenticates a SEM by
verifying its own signature (or encryption) as de-
scribed in Section 2.1. In fact, signature and en-
cryption verification steps assure the user of the in-
tegrity of the communication with the SEM.

3 Architecture

The overall architecture is made up of three compo-

nents: CA, SEM, and user.

A single CA governs a (small) number of SEMs.
Each SEM, in turn, serves many users. The assign-
ment of users to SEMs is assumed to be handled
off-line by a security administrator. A user may be
served by multiple SEM’s.

Our CA component is a simple add-on to the exist-
ing CA and is thus considered an off-line entity. For
each user, the CA component takes care of generat-
ing an RSA public key, a corresponding RSA public
key certificate and a pair of half-keys (one for the
user and one for the SEM) which, when combined,
form the RSA private key. The respective half-keys
are then delivered, out-of-band, to the interested
parties.

The user component consists of the client library
that provides the mRSA sign and mRSA decrypt
operations. (As mentioned earlier, the verify and
encrypt operations are identical to standard RSA.)
It also handles the installation of the user’s creden-
tials at the local host.

The SEM component is the critical part of the ar-
chitecture. Since a single SEM serves many users,
performance, fault-tolerance and physical security
are of paramount concern. The SEM is basically a
daemon process that processes requests from 1ts con-
stituent users. For each request, SEM consults its
revocation list and refuses to help sign (or decrypt)
for any revoked users. A SEM can be configured to
operate in a stateful or stateless model. The former
involves storing per user state (half-key and certifi-
cate) while, in the latter, no per user state is kept,
however, some extra processing is incurred for each
user request. The tradeoff is fairly clear: per user
state and fast request handling versus no state and
somewhat slower request handling.

We now describe the SEM architecture in more de-
tail. A user’s request is initially handled by the SEM
controller where the packet format i1s checked. Next,
the request is passed on to the client manager which
performs a revocation check. If the requesting user
is not revoked, the request is handled depending on
the SEM state model. If the SEM is stateless, it
expects to find the so-called SEM bundle in the re-
quest. This bundle, as discussed in more detail later,
contains the mRSA half-key, d7¥M  encrypted (for
the SEM, using its public key) and signed (by the
CA). The bundle also contains the RSA public key
certificate for the requesting user. Once the bun-
dle is verified, the request is handled by either the
mMRSAgign or MRSAyecrypt component. In case of the
appropriate signature request, the optional times-
tamping service is invoked. If the SEM maintains
user state, the bundle is expected only in the ini-
tial request. The same process as above is followed,
however, the SEM’s half-key and the user’s certifi-
cate are stored locally. In subsequent user requests,
the bundle (if present) is ignored and local state is
used instead.

The administrator communicates with the SEM via
the admin interface. The interface enables the ad-
ministrator to manipulate the revocation list.

4 Security of the SEM architecture

We now briefly summarize the security features of

mRSA and the SEM architecture.

First, consider an attacker trying to subvert a user
(Alice). The attacker’s goal is to decrypt a message
sent to Alice or to forge Alice’s signature on a cer-
tain message. Recall that the token sent back to
Alice is t = 2" mod N for some value of z. The
attacker sees both # and the token ¢. In fact, since
there is no authentication of the user’s request to the
SEM, the attacker can obtain this ¢ for any z of its
choice. We claim that this information 1s of no use
to an attacker. After all, d*¢™ is just a random num-
ber in [1, n] independent of the rest of the attacker’s
view. More precisely, we argue that any attack pos-
sible with the SEM architecture is also possible when
the user uses standard RSA. This statement can be
proven using a simulation argument. In attacking
standard RSA one can simulate the SEM (by pick-
ing a random integer d**™ in [1, n]) and thus use the
attack on the SEM to mount an attack on standard
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RSA. Furthermore, the attacker cannot masquerade
as the SEM since Alice checks all responses from the
SEM as described in Section 2.1.

Suppose the attacker is able to compromise the SEM
and expose the secret key d*¢”*. This enables the at-
tacker to “unrevoke” revoked, or block possible fu-
ture revocation of currently valid, certificates. How-
ever, knowledge of d**”* does not enable the attacker
to decrypt messages or sign messages on behalf of
users. Nevertheless, it is desirable to protect the
SEM’s key. A standard approach is to distribute
the key among a number of SEM servers using se-
cret sharing. Furthermore, the key should never be
reconstructed at a single location. To extract the
SEM’s key an attacker would need to break into mul-
tiple SEM servers. When using mRSA, it is possible
to distribute the SEM’s secret in this way using stan-
dard techniques from threshold cryptography [3].

Once Alice’s key is revoked, she cannot decrypt or
sign messages using her private key. To show this,
we argue that, if Alice could sign or decrypt mes-
sages using only her share of private key, then RSA
18 insecure.

Finally, note that each user is given her own ran-
dom RSA modulus n;. This means that if a number
of users are compromised (or a number of users col-
lude) there is no danger to other users. The private
keys of the compromised users will be exposed, but
private keys of all other users will remain unaffected.

5 Implementation

We implemented the entire SEM architecture for the
purposes of experimentation and validation. The
reference implementation is publicly available. Fol-
lowing the architecture described earlier, the imple-
mentation 1s composed of three parts:

1. CA and Admin Utilities:
includes certificate issuance and revocation in-
terface.

2. SEM daemon:

SEM architecture as described in Section 3

3. Client libraries:
mRSA user functions accessible via an API.

Our reference implementation uses the popular
OpenSSL [12] library as the low-level cryptographic
platform. OpenSSL incorporates a multitude of
cryptographic functions and large-number arith-
metic primitives. In addition to being efficient and
available on many common hardware and software
platforms, OpenSSL adheres to the common PKCS
standards and is in the public domain.

The SEM daemon and the CA/Admin utilities are
implemented on Linux and Solaris while the client
libraries are available on both Linux and Windows98
platforms.

In the initialization phase, CA utilities are used to
set up the RSA public key-pair for each client (user).
The set up process follows the description in Section
2. Once the mRSA parameters are generated, two
structures are exported: 1) SEM bundle, which in-
cludes the SEM’s half-key d?M  and 2) user bundle,
which includes df and the entire server bundle. The
format of both SEM and user bundles conforms to

the PKCS#7 standard.

The server bundle is basically an RSA envelope
signed by the CA and encrypted with the SEM’s
public key. The client bundle is a shared-key en-
velope also signed by the CA and encrypted with
the user-supplied key which can be a password or a
passphrase. (A user cannot be assumed to have a
pre-existing public key.)

After issuance, the user bundle is distributed in an
out-of-band manner to the appropriate user. Before
attempting any mRSA transactions, the user must
first decrypt and verify the bundle. A separate util-
ity program is provided for this purpose. With it,
the bundle is decrypted with the user-supplied key,
the CA’s signature is verified, and, finally, the user’s
new certificate and half-key are extracted and stored
locally.

To sign or decrypt a message, the user starts with
sending an mMRSA request with the SEM bundle pig-
gybacked. The SEM processes the request and the
bundle contained therein as described in Section 3.
(Recall that the SEM bundle is processed based on
the state model of the particular SEM.) All mRSA
packets have a common packet header; the payload
format depends on the packet type. The packet
header is defined in Figure 1.
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0 8 16 24 32
e e e e +
| PROTOCOL | PACKET_TYPE | DATA_LENGTH I
e e e e +
PROTOCOL protocol identifier. Set to MRSA(=1) in current code
PACKET_TYPE: one of the following:

1) REG_REQ_T : register request

2) REG_RLY_T : register reply

3) SIG_REQ_T : signature request

4) SIG_RLY_T : signature reply

5) DEC_REQ_T : decrypt request

6) DEC_RLY_T : decrypt reply

Figure 1: mRSA Packet Header

5.1 Email client plug-in and 128M of RAM. Although an 800 Mhz processor

To demonstrate the ease of using the SEM architec-
ture we implemented a plug-in for the Eudora email
reader [15]. When sending signed email the plug-in
reads the user bundle described in the previous sec-
tion. It obtains the SEM address from the bundle
and then communicates with the SEM to sign the
email. The resulting signed email can be verified
using any S/MIME capable email client such as Mi-
crosoft Outlook. In other words, the email recipient
is oblivious to the fact that a SEM is used to control
the sender’s signing capabilities.

Figure 2 shows a screen snap shot of trying to send
signed email using a revoked key. In this exam-
ple, the plug-in contacts the SEM and is told that
the SEM will not supply the token for a revoked
key. Consequently, the plug-in displays a message
informing the user that the email cannot be signed.

6 Experimental Results

We conducted a number of experiments in order to
evaluate the practicality of the proposed architec-
ture and our implementation.

We ran the SEM daemon on a Linux PC equipped
with an 800 Mhz Pentium III processor. Two differ-
ent clients were used. The fast client was on another
Linux PC with a 930 MHz Pentium III. Both SEM
and fast client PC-s had 256M of RAM. The slow
client was on a Linux PC with 466 MHz Pentium II

1s not exactly state-of-the-art, we opted to err on the
side of safety and assume a relatively conservative
(i.e., slow) SEM platform. In practice, a SEM might
reside on much faster hardware and is likely to be
assisted by an RSA hardware acceleration card.

FEach experiment involved one thousand iterations.
All reported timings are in milliseconds (rounded to
the nearest 0.1 ms). The SEM and client PCs were
located in different sites interconnected by a high-
speed regional network. All protocol messages are
transmitted over UDP.

Client RSA key (modulus) sizes were varied among
512, 1024 and 2048 bits. (Though it is clear that
512 is not a realistic RSA key size any longer.) The
timings are only for the mRSA sign operation since
mRSA decrypt is operationally almost identical.

6.1 Communication Overhead

In order to gain precise understanding of our results,
we first provide separate measurements for commu-
nication latency in mRSA. Recall that both mRSA
operations involve a request from a client followed
by a reply from a SEM. As mentioned above, the
test PCs were connected by a high-speed regional
network. We measured communication latency by
varying the key size which directly influences mes-
sage sizes. The results are shown in Table 1 (mes-
sage sizes are in bytes). Latency is calculated as the
round-trip delay between the client and the SEM.
The numbers are identical for both client types.
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Figure 2: Screen snapshot of SEM email plug-in

Keysize | Message Size | Comm. latency
(bits) (bytes) (ms)
512 102 4.0
1024 167 4.5
2048 296 5.5

Table 1: Communication latency

6.2 Standard RSA

As a point of comparison, we initially timed the
standard RSA sign operation in OpenSSL (Version
0.9.6) with three different key sizes on each of our
three test PCs. The results are shown in Tables
2 and 3. Each timing includes a message hash
computation followed by an exponentiation. Ta-
ble 2 reflects optimized RSA computation where
the Chinese Remainder Theorem (CRT) is used to
speed up exponentiation (essentially exponentiation
1s done modulo the prime factors rather than mod-
ulo N). Table 3 reflects unoptimized RSA computa-
tion without the benefit of the CRT. Taking advan-
tage of the CRT requires knowledge of the factors (p
and ¢) of the modulus n. Recall that, in mRSA, nei-

ther the SEM nor the user know the factorization of
the modulus, hence, with regard to its computation
cost, mRSA is more akin to unoptimized RSA.

As evident from the two tables, the optimized RSA
performs a factor of 3-3.5 faster for the 1024- and
2048-bit moduli than the unoptimized version. For
512-bit keys, the difference is slightly less marked.

6.3 mRSA Measurements

The mRSA results are obtained by measuring the
time starting with the message hash computation
by the user (client) and ending with the verification
of the signature by the user. The measurements are
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Keysize | 466 Mhz PII | 800 Mhz PIII | 930 Mhz PIII
(bits) (slow client) (SEM) (fast client)
512 2.9 1.4 1.4
1024 14.3 7.7 7.2
2048 85.7 49.4 42.8

Table 2: RSA results with CRT (in milliseconds).

Keysize | 466 Mhz PII | 800 Mhz PIII | 930 Mhz PIII
(bits) (slow client) (SEM) (fast client)
512 6.9 4.0 3.4
1024 43.1 24.8 21.2
2048 297.7 169.2 144.7

Table 3: Standard RSA results without CRT (in milliseconds).

Hlustrated in Table 4.

It comes as no surprise that the numbers for the slow
client in Table 4 are very close to the unoptimized
RSA measurements in Table 3. This is because the
time for an mRSA operation is determined solely by
the client for 1024- and 2048- bit keys. With a 512-
bit key, the slow client is fast enough to compute its
PSy in 6.9ms. This is still under 8.0ms (the sum
of 4ms round-trip delay and 4ms RSA operation at
the SEM).

The situation is very different with a fast client.
Here, for all key sizes, the timing is determined
by the sum of the round-trip client-SEM packet de-
lay and the service time at the SEM. For instance,
178.3ms (clocked for 2048-bit keys) is very close to
174.7ms which is the sum of 5.5ms communication
delay and 169.2ms unoptimized RSA operation at
the SEM.

All of the above measurements were taken with the
SEM operating in a stateful mode. In a stateless
mode, SEM incurs further overhead due to the pro-
cessing of the SEM bundle for each incoming re-
quest. This includes decryption of the bundle and
verification of the CA’s signature found inside. To
get an idea of the mRSA overhead with a state-
less SEM, we conclude the experiments with Table
5 showing the bundle processing overhead. Only
1024- and 2048-bit SEM key size was considered.
(512-bit keys are certainly inappropriate for a SEM.)
The CA key size was constant at 1024 bits.

7 Comparison of SEM with existing
certificate revocation techniques

Certificate revocation is a well recognized problem
with the existing Public Key Infrastructure (PKI).
Several proposals address this problem. We briefly
review these proposals and compare them to the
SEM architecture. For each proposal we describe
how it applies to signatures and to encryption. For
simplicity we use signed and encrypted Email as an
example application. We refer to the entity vali-
dating and revoking certificates as the Validation
Authority (VA). Typically, the VA is the same en-
tity as the Certificate Authority (CA). However, in
some cases these are separate organizations.

A note on timestamping. Binding signature seman-
tics (Section 1.3) for signature verification states
that a signature is considered valid if the key used
to generate the signature was valid at the time sig-
nature generation. Consequently, a verifier must
establish exactly when a signature was generated.
Hence, when signing a message, the signer must in-
teract with a trusted timestamping service to obtain
a trusted timestamp and a signature over the user’s
(signed) message. This proves to any verifier that
a signature was generated at a specific time. All
the techniques discussed below require a signature
to contain a timestamp indicating when a signature
was 1ssued. We implicitly assume this service. As
we will see, there is no need for a trusted time ser-
vice to implement binding signature semantics with
the SEM architecture.
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Keysize | 466 Mhz PII | 930 Mhz PIII
(bits) (slow client) (fast client)
512 8.0 9.9
1024 45.6 31.2
2048 335.6 178.3

Table 4: Timings for mRSA (in milliseconds).

SEM key size

Bundle overhead

1024

8.1

2048

50.3

Table 5: Bundle overhead in mRSA with a SEM in a stateless mode (in milliseconds).

7.1 Review of existing revocation tech-

niques

CRLs and A-CRLs: Certificate Revocation Lists
are the most common way to handle certificate revo-
cation. The Validation Authority (VA) periodically
posts a signed list of all revoked certificates. These
lists are placed on designated servers called CRL
distribution points. Since these lists can get quite
long, the VA may alternatively post a signed A-CRL
which only contains the list of revoked certificates
since the last CRL was issued. For completeness, we
briefly explain how CRLs are used in the context of
signatures and encryption:

— Encryption: at the time email is sent, the sender
checks that the receiver’s certificate is not on the
current CRL. The sender then sends encrypted
email to the receiver.

— Signatures: when verifying a signature on a mes-
sage, the verifier checks that, at the time that
the signature was issued, the signer’s certificate
was not on the CRL.

OCSP: The Online Certificate Status Protocol

(OCSP) [11] improves on CRLs by avoiding the

transmission of long CRLs to every user and by pro-

viding more timely revocation information. To vali-

date a specific certificate in OCSP, the user sends a

certificate status request to the VA. The VA sends

back a signed response indicating whether the spec-
ified certificate is currently revoked. OCSP is used
as follows for Encryption and signatures:

— Signatures: When verifying a signature, the ver-
ifier sends an OCSP query to the VA to check
if the corresponding certificate is currently valid.
Note that the current OCSP protocol prevents
one from implementing binding semantics: it is
not possible to ask an OCSP responder whether

a certificate was valid at some time in the past.
Hopefully this will be corrected in future versions
of the protocol.

One could potentially abuse the OCSP protocol
and provide binding semantics as follows. To sign
a message, the signer generates the signature,
and also sends an OCSP query to the VA. The VA
responds with a signed message saying that the
certificate is currently valid. The signer appends
both the signature and the response from the VA
to the message. To verify the signature, the ver-
ifier checks the VA’s signature on the validation
response. The response from the VA provides
a proof that the signer’s certificate is currently
valid. This method reduces the load on the VA:
it 1s not necessary to contact the VA every time
a signature is verified. Unfortunately, there is
currently no infrastructure to support this mech-
anism.

— Encryption: Every time the sender sends an en-
crypted message to the receiver she sends an
OCSP query to the VA to ensure that the re-
ceiver’s certificate is still valid.

Certificate Revocation Trees: Kocher suggested
an improvement over OCSP [7]. Since the VA is a
global service it must be sufficiently replicated in or-
der to handle the load of all the validation queries.
This means the VA’s signing key must be replicated
across many servers which is either insecure or ex-
pensive (VA servers typically use tamper-resistance
to protect the VA’s signing key). Kocher’s idea is to
have a single highly secure VA periodically post a
signed CRL-like data structure to many insecure VA
servers. Users then query these insecure VA servers.
The data structure proposed by Kocher is a hash
tree where the leaves are the currently revoked cer-
tificates sorted by serial number (lowest serial num-
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ber is the left most leaf and the highest serial num-
ber is the right most leaf). The root of the hash tree
is signed by the VA. This hash tree data structure
is called a Certificate Revocation Tree (CRT).
When a user wishes to validate a certificate CERT
she issues a query to the closest VA server. Any inse-
cure VA can produce a convincing proof that CERT
is (or is not) on the CRT. If n certificates are cur-
rently revoked, the length of the proof is O(logn).
In contrast, the length of the validity proof in OCSP
is O(1).

Skip-lists and 2-3 trees: One problem with
CRT’s is that, every time a certificate is revoked,
the entire CRT must be recomputed and distributed
in its entirety to the various VA servers. A data
structure allowing for dynamic updates would solve
this problem since the secure VA would only need
to send small updates to the data structure along
with a signature on the new root of the structure.
Both 2-3 trees proposed by Naor and Nissim [10] and
skip-lists proposed by Goodrich [5] are natural data
structures for this purpose. Additional data struc-
tures were proposed in [1]. When a total of n cer-
tificates are already revoked and k new certificates
must be revoked during the current time period,
the size of the update message to the VA servers
is O(klogn) (as opposed to O(n) with CRT’s). The
proof of certificate’s validity is O(logn), same as

with CRTs.

7.2 Comparison with SEM architecture

CRLs and OCSP are the most commonly deployed
certificate revocation techniques. Some positive ex-
periments with skip-lists are reported in [5]. We
compare the SEM architecture with CRLs and
OCSP. Since CRT’s and skip-lists are used in the
same way as OCSP (i.e., query a VA to obtain a
proof of validity) most everything in our OCSP dis-
cussion applies to these methods as well.

Immediate revocation: Suppose we use CRLs for
revocation. Then, Bob verifies a signature or en-
crypts a message he must first download a long CRL
and verify that the Alice’s certificate is not on the
CRL. Note that Bob is uninterested in all but one
certificate on the CRL. Nevertheless, he must down-
load the entire CRL since, otherwise, the VA’s sig-
nature on the CRL cannot be verified. Since CRLs
and A-CRLs tend to get long, they are downloaded
infrequently, e.g., once a week or month. As a result,
certificate revocation might only take effect a month

after the revocation occurs. The SEM architecture
solves this problem altogether.

Suppose now that OCSP is usd for revocation.
Whenever Bob sends email to Alice he first issues an
OCSP query to verify validity of Alice’s certificate.
He then sends email encrypted with Alice’s public
key. The encrypted email could sit on Alice’s email
server for a few hours or days. If, during this time,
Alice’s key is revoked (e.g., because Alice is fired or
looses her private key) there is nothing preventing
the holder of Alice’s private key from decrypting the
email after revocation. The SEM solves this prob-
lem by disabling the private key immediately after
revocation.

Implicit timestamping: Both OCSP and CRLs
require the signer to contact a trusted time ser-
vice at signature generation time to obtain a secure
timestamp for the signature. Otherwise, a verifier
cannot determine with certainty when the signature
was 1ssued. If binding semantics are sufficient, the
time service is unnecessary when using the SEM ar-
chitecture. Once a certificate is revoked, the corre-
sponding private key can no longer be used to issue
signatures. Therefore, a verifier holding a signature
is explicitly assured that the signer’s certificate was
valid at the time the signature was generated.

Shifted validation burden: With current PKIs,
the burden of validating certificates is placed on: (1)
senders of encrypted messages and (2) verifiers of
signed messages. In the SEM architecture, the bur-
den of certificate validation is reversed: (1) receivers
of encrypted messages and (2) signers (generators)
of signed messages.

SEM Replication (A disadvantage): Since many
users need to use the SEM for decryption and sign-
ing, it is natural to replicate it. However, replicating
the SEM across organizations is not recommended
for the same reason that replicating the VA in OCSP
is not recommended. Essentially, the SEM gener-
ates tokens using a private key known only to the
SEM. The result of exposing this key is that an at-
tacker could unrevoke certificates. Replicating the
SEM might make it easier to expose the SEM’s key.
Hence, the SEM architecture is mainly applicable
in the same environments where OCSP is used, i.e.,
mainly medium-sized organizations. The SEM ar-
chitecture is not geared towards the global Internet.
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8 Conclusions

We described a new approach to certificate revo-
cation. Rather than revoking the user’s certificate
our approach revokes the user’s ability to perform
cryptographic operations such as signature genera-
tion and decryption. This approach has several ad-
vantages over traditional certificate revocation tech-
niques: (1) revocation is instantaneous — the in-
stant the user’s certificate is revoked the user can
no longer decrypt or sign messages, (2) when us-
ing binding signature semantics there 1s no need to
validate the signer’s certificate during signature ver-
ification, and (3) using mRSA this revocation tech-
nique is transparent to the peer — the system gen-
erates standard RSA signatures and decrypts stan-
dards RSA encrypted messages.

We implemented the SEM architecture for experi-
mentation purposes. Qur measurements of the im-
plementation show that signature and decryption
times are essentially unchanged from the user’s per-
spective. Therefore, we believe this architecture is
appropriate for a medium-size organization where
tight control of security capabilities is desired. The
SEM architecture is not designed for the global In-
ternet.
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Abstract

We show how to efficiently generate RSA keys on a low power handheld device with the help
of an untrusted server. Most of the key generation work is offloaded onto the server. However, the
server learns no information about the key it helped generate. We experiment with our techniques
and show they result in up to a factor of 5 improvement in key generation time. The resulting
RSA key looks like an RSA key for paranoids. It can be used for encryption and key exchange, but
cannot be used for signatures.

1 Introduction

In recent years we have seen an explosion in the number of applications for handheld devices. Many
of these applications require the ability to communicate securely with a remote device over an authen-
ticated channel. Example applications include: (1) a wireless purchase using a cell phone, (2) remote
secure synchronization with a PDA, (3) using a handheld device as an authentication token [2], and
(4) handheld electronic wallets [3]. Many of these handheld applications require the ability to issue
digital signatures on behalf of their users.

Currently, the RSA cryptosystem is the most widely used cryptosystem for key exchange and digital
signatures: SSL commonly uses RSA-based key exchange, most PKI products use RSA certificates,
etc. Unfortunately, RSA on a low power handheld device is somewhat problematic. For example,
generating a 1024 bit RSA signature on the PalmPilot takes approximately 30 seconds. Nevertheless,
since RSA is so commonly used on servers and desktops it is desirable to improve its performance on
handhelds.

In this paper we consider the problem of generating RSA keys. Generating a 1024 bit RSA key
on the PalmPilot can take as long as 15 minutes. The device locks up while generating the key and
is inaccessible to the user. For wireless devices battery life time is a concern. Consider a user who is
given a new cellphone application while traveling. The application may need to generate a key before
it can function. Generating the key while the user is traveling will lock up the cellphone for some time
and may completely drain the batteries.

The obvious solution is to allow the handheld to communicate with a desktop or server and have
the server generate the key. The key can then be downloaded onto the handheld. The problem with
this approach is that the server learns the user’s private key. Consequently, the server must be trusted
by the user. This approach limits mobility of the handheld application since users can only generate a
key while communicating with their home domain. We would like to enable users to quickly generate
an RSA key even when they cannot communicate with a trusted machine.

*Supported by NSF CCR-9732754.

96


cameras
Text Box
96


Server #1 Server #2

PalmPilot
Serla! Gateway Ethernet
connection
AN
~ _
>~ _ _ SSL Connection — 7

Figure 1: A two server configuration

We study the following question: can we speed up RSA key generation on a handheld with the
help of an untrusted server? Our goal is to offload most of the key generation work onto the untrusted
server. However, once the key is generated the server should have no information about the key it
helped generate. This way the handheld can take advantage of the server’s processing power without
compromising the security of its keys.

Our best results show how to speed up the generation of unbalanced RSA keys. We describe these
keys and explain how they are used in the next section. Our results come in two flavors. First, we
show how to speed up key generation with the help of two untrusted servers. We assume that the
two servers are unable to share information with each other. For instance, the two untrusted servers
may be operated by different organizations. Using two untrusted servers we are able to speed up key
generation by a factor of 5. We then show that a single untrusted server can be used to speed up
key generation by a factor of 2. In Section 4 we discuss speeding up normal RSA key generation (as
opposed to unbalanced keys).

We implemented and experimented with all our algorithms. We used the PalmPilot as an example
handheld device since it is easy to program. Clearly our techniques apply to any low power handheld:
pagers, cell phones, MP3 players, PDA’s, etc. In our implementation, the PalmPilot connects to a
desktop machine using the serial port. When a single server is used to help generate the key, the
pilot communicates with the desktop using TCP/IP over the serial link. The desktop functions as
the helping server. Note that there is no need to protect the serial connection. After all, since the
desktop learns no information about the key it helped generate, an attacker snooping the connection
will also learn nothing. When two servers are used, the desktop functions as a gateway enabling the
pilot to communicate with the two servers. In this case, communication between the pilot and servers
is protected by SSL to prevent eavesdropping by the gateway machine, and to prevent one server from
listening in on communication intended for the other. Typically, the gateway machine functions as
one of the two servers, as shown in Figure 1.

1.1 Timing cryptographic primitives on the PalmPilot

For completeness we list some running times for cryptographic operations on the PalmPilot. We used
the Palm V which uses a 16.6MhZ Dragonball processor. Running times for DES, SHA-1, and RSA
were obtained using a port of parts of SSLeay to the PalmPilot started by Ian Goldberg.
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Algorithm Time Comment
DES encryption 4.9ms/block

SHA-1 2.7ms/block

1024 bit RSA key generation | 15 minutes on average
1024 bit RSA sig. generation | 27.8 sec.

1024 bit RSA sig. verify 0.758 sec. e=

1024 bit RSA sig. verify 1.860 sec. e = 65537

2 Preliminaries

2.1 Overview of RSA key generation

As a necessary background we give a brief overview of RSA key generation. Recall that an RSA key is
made up of an n-bit modulus N = pq and a pair of integers d, called the private exponent, and e, called
the public exponent. Typically, N is the product of two large primes, each n/2 bits long. Throughout
the paper we focus on generating a 1024 bit key (i.e. n = 1024). The algorithm to generate an RSA
key is as follows:

Step 1: Repeat the following steps until two primes p, g are found:

a. Candidate Pick a random 512 bit candidate value p.

b. Sieve Using trial division, check that p is not divisible by any small primes (i.e. 2,3,5,7,
etc.).

c. Test Run a probabilistic primality test on the candidate. For simplicity one can view the
test as checking that ¢g(P~1)/2 = +1 (mod p), where g is a random value in 1...p— 1. All
primes will pass this test, while a composite will fail with overwhelming probability [10].

Step 2: Compute the product N = pq (the product is 1024 bits long).

Step 3: Pick encryption and decryption exponents e and d where e -d = 1 mod ¢(N) and p(N) =
N—-p—g+1.

The bulk of the key generation work takes place in step (1). Once the two primes p and ¢ are found,
steps (2) and (3) take negligible work. We note that trial division (step 1b) is frequently optimized
by using a sieving algorithm. Sieving works as follows: once the candidate p is chosen in step (1la),
the sieve is used to quickly find the closest integer to p that is not divisible by any small primes. The
candidate p is then updated to be the integer found by the sieve. Throughout the paper we use a
sieving algorithm attributed to Phil Zimmerman.

Our goal is to improve the performance of step (1). Within step (1), the exponentiation in step (1c)
dominates the running time. Our goal is to offload the primality test to the server without exposing
any information about the candidate being tested. Hence, the question is: how can we test that
g?~! mod p = 1 with the help of a server without revealing any information about p? To do so we
must show how to carry out the exponentiation while solving two problems: (1) hiding the modulus
p, and (2) hiding the exponent p — 1.
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2.2 Unbalanced RSA keys

Our best results show how to speed up the generation of unbalanced RSA keys. An unbalanced key
uses a modulus N of the form N = p- R where p is a 512 bit prime and R is a 4096 bit random
number. One can show that with high probability R has a prime factor that is at least 512 bits long
(the probability that it does not have such a factor is less than 1/22*). Consequently, the resulting
modulus N is as hard to factor as a standard modulus N = pq.

An unbalanced key is used in the same way as standard RSA keys. The public key is (e, N) and
the private key is (d, N). We require that e-d =1 mod p — 1. Suppose p is m-bits long. The system
can be used to encrypt messages shorter than m bits. As in standard RSA, to encrypt a message M,
whose length is much shorter than m bits, the sender first applies a randomized padding mechanism,
such as OAEP [4, 9]. The padding mechanism results in an m — 1 bit integer P (note that P < p).
The sender then constructs the ciphertext by computing C = P® mod N. Note that the ciphertext is
as big as N. To decrypt a ciphertext C, the receiver first computes C}, = C mod p and then recovers
P by computing P = Cg mod p. The plaintext M is then easily extracted from P. Since decryption
is done modulo p it is as fast as standard RSA.

The technique described above for using an unbalanced key is similar to Shamir’s “RSA for para-
noids” [11]. It shows that unbalanced keys can be used for encryption/decryption and key exchange.
Unfortunately, unbalanced keys cannot be used for digital signatures. We note that some attacks
against RSA for paranoids have been recently proposed [5]. However, these attacks do not apply when
one uses proper padding prior to encryption. In particular, when OAEP padding is used [4] the attacks
cannot succeed since the security of OAEP (in the random oracle model) only relies on the fact that
the function f : {0,...,2™ '} — Zy defined by f(z) = z° mod N is a one-to-one trapdoor one way
function.

3 Generating an unbalanced RSA key with the help of untrusted
servers

We show how RSA key generation can be significantly sped up by allowing the PalmPilot to interact
with untrusted servers. At the end of the computation the servers should know nothing about the key
they helped generate. We begin by showing how two untrusted servers can help the Pilot generate
RSA keys. The assumption is that these two servers cannot exchange information with each other.
To ensure that an attacker cannot eavesdrop on the network and obtain the information being sent
to both servers, our full implementation protects the connection between the Pilot and the servers
using SSL. Typically, the machine to which the pilot is connected can be used as one of the untrusted
servers (Figure 1). We then show how to speed up key generation with the help of a single server. In
this case there is no need to protect the connection.

3.1 Generating keys with the help of two servers

Our goal is to generate a modulus of the form N = pR where p is a 512-bit prime and R is a 4096-bit
random number. To offload the primality test onto the servers we must hide the modulus p and the
exponent p — 1. To hide the modulus p we intend to multiply it by a random number R and send the
resulting N = pR to the servers. The server will perform computations modulo N = pR. If it turns
out that p is prime, then sending N to the servers does not expose any information about p or R. If
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p is not prime we start over. To hide the exponent p — 1 used in the primality test we intend to share
it among the two servers. Individually, neither one of the servers will learn any information.

Our algorithm for generating an unbalanced RSA modulus N = pR is as follows. The algorithm
repeats the following steps until an unbalanced key is generated:

Step 1: Pilot generates a 512 bit candidate p that is not divisible by small primes and a 4096 bit
random number R. We require that p = 3 mod 4.

Step 2: Pilot computes N =p- R.

Step 3: Pilot picks random integers s; and sg in the range [—p, p] such that s; +so = (p—1)/2. It
also picks a random g € Z.

Step 4: Pilot sends (N, g, s1) to server 1 and (N, g, —s3) to server 2.

Step 5: Server 1 computes X; = ¢°! mod N. Server 2 computes X5 = ¢g{=%2) mod N. Both results
X1 and X5 are sent back to the pilot.

Step 6: Pilot checks whether X; = £ X5 mod p. If equality holds, then N = pR is declared as a
potential unbalanced RSA modulus. Otherwise, the algorithm is restarted in Step 1.

Step 7: The Pilot locally runs a probabilistic primality test to verify that p is prime. This is done to
ensure that the servers returned correct values.

First, we verify the soundness of the algorithm. In step 6 the Pilot verifies that g% -¢g*2 = ¢(?—1)/2 =
+1 mod p. If the test is satisfied then p is very likely to be prime. Then step 7 ensures that p is in
fact prime and that the servers did not respond incorrectly. When generating a 1024 bit RSA key, a
single primality test takes little time compared to the search for a 512 bit prime. Hence, Step 7 adds
very little to the total running time.

During the search for the prime p, the only computation carried out by the pilot is the probable
prime generation and the computation of s; and so. The time to construct s; and sg is negligible.
On the other hand, generating the probable prime p requires a sieve to ensure that p is not divisible
by small factors. As we shall see in Section 5 the sieve is the bottleneck. This is unusual since in
standard RSA modulus generation sieving takes only a small fraction of the entire computation. We
use a sieving method attributed to Phil Zimmerman. We note that faster sieves exist, but they result
in an insecurity of our algorithm.

Security To analyze the security properties of the algorithm we must argue that the untrusted
servers learn no information of value to them. During the search for the RSA modulus many candidates
are generated. Since these candidates are independent of each other, any information the servers learn
about rejected candidates does not help them in attacking the final chosen RSA modulus. Once the
final modulus N = pR is generated in Step 2, each server is sent the value of N and s; where ¢ is either
1 or 2. The modulus N will become public anyhow (it is part of the public key) and hence reveals no
new information. Now, assuming servers 1 and 2 cannot communicate, the value s; is simply a random
number (from Server 1’s point of view). Server 1 could have just as easily picked a random number
in the range [—N, N] itself. Hence, s; reveals no new information to Server 1 (formally, a simulation
argument shows that s; reveals at most two bits). The same holds for Server 2. Hence, as long as
Server 1 and Server 2 cannot communicate, no useful information is revealed about the factorization
of N. We note that if the servers are able to communicate, they can factor N.
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Performance The number of iterations until a modulus is found is identical to local generation of
an (unbalanced) modulus on the PalmPilot. However, each iteration is much faster than the classic
RSA key generation approach of Section 2.1. After all, we offloaded the expensive exponentiation to
a fast Pentium machine. As we shall see in Section 5.2, the total running time is reduced by a factor
of 5.

3.2 Generating keys with the help of a single server

Next, we show how a single untrusted server can be used to reduce the time to generate an RSA key
on the PalmPilot. Once the key is generated, the server has no information regarding the key it helped
generate. Typically, the pilot connects to the helping server directly through the serial or infrared
ports.

As before we need to compute g®=1/2 mod p to test whether p is prime. Our technique involves
reducing the size of the exponent using the help of the server and hence speeding up exponentiation
on the pilot. The algorithm repeats the following steps until an unbalanced modulus is found:

Step 1: Pilot generates a 512 bit candidate p that is not divisible by small primes and a 4096 bit
random number R. We require that p = 3 mod 4.

Step 2: Pilot computes N = p- R. It picks a random g € Z},.

Step 3: Pilot picks a random 160 bit integer r and a random 512 bit integer a. It computes z =
r+a(p—1)/2.

Step 4: Pilot sends (N, g, z) to the server.
Step 5: The server computes X = g°* mod N and sends X back to the Pilot.
Step 6: Pilot computes Y = ¢" mod p.

Step 7: Pilot checks if X = +Y mod p. If so then the algorithm is finished and N = pR is declared
as a potential unbalanced RSA modulus. Otherwise, the algorithm is restarted in Step 1.

Step 8: The Pilot locally runs a probabilistic primality test to verify that p is prime.

To verify soundness observe that N will make it to step 8 only if X = +V ie. g¢'tele-1/2 =
+¢" mod p. As before, this condition is always satisfied if p is prime. The test will fail with over-
whelming probability if p is not prime. Hence, once step 8 is reached the modulus N = pR is very
likely to be an unbalanced modulus. The test is Step 8 takes little time compared to the entire search
for the 512-bit prime.

Performance Since we are generating an unbalanced modulus the number of iterations until NV is
found is the same as in local generation of such a modulus on the PalmPilot. Within each iteration
the Pilot generates p and R using a sieve and then computes Y = ¢" mod p (in step 6). However, r is
only 160 bits long. This is much shorter than when a key is generated without the help of a server.
In that case the Pilot has to compute an exponentiation where the exponent is 512 bits long. Hence,
we reduce the exponentiation time by approximately a factor of three. Total key generation time is
reduced by a factor of 2, due to the overhead of sieving.
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Recall that in Step 6 the Pilot computes Y = ¢" mod p where r is a 160-bit integer. This step can
be further sped up with the help of the server. Let A = 2%0 and write r = ry + r1 A + 19 A% + r3A3
where 7, r1,72,73 are all in the range [0, A]. In Step 5 the server could send back the vector R =
(g4, 9", ¢*’) mod N in addition to sending X. Let K = (Ry, Ry, Rs). Then in Step 6 the Pilot only
has to compute Y = ¢’ - R}' - Ri? - R5® mod p. Using Simultaneous Multiple Exponentiation [7, p.
617] Step 6 can now be done in approximately half the time of computing ¥ = ¢g" mod p on the Pilot
directly. This improvement reduces the total exponentiation time on the Pilot by an additional factor
of 2.

Security In the last iteration, when the final p and R are chosen, the server learns the value z =
a(p — 1) + r. Although z is a “random looking” 1024 bit number, it does contain some information
about p. In particular, z mod p — 1 is very small (only 160 bits long). The question is whether z helps
an adversary break the resulting key. The best known algorithm for doing so requires 2'/2 modular
exponentiations. Due to our choice of 160 bits for r, the algorithm has security of approximately
280 This is good enough since a 1024 bits RSA key offers security of 280 anyhow. Nevertheless,
the security of the scheme is heuristic since it depends on the assumption that no faster algorithm
exists for factoring N given z. More precisely, the scheme depends on the following “(p — 1)-multiple
assumption”:

(p—1)-multiple assumption: Let A, be the set of integers N = pq where p and ¢ are both n-bit primes.
Let m be an integer so that the fastest algorithm for factoring a random element N € A, runs in time
at least 2™/2. Then the two distributions: (N, +a(p—1)/2) and (N, z) cannot be distinguished with
non-negligible probability by an algorithm whose running time is less than 2™/2. Here N is randomly
chosen in A, a is randomly chosen in [0, p], 7 is randomly chosen in [0,2™], and z is randomly chosen
in [0,p?/2].

Based on the (p — 1)-multiple assumption, the integer z given to the server contains no more
statistical information than a random number in the range [0,p?]. Hence, the server learns no new
useful information from z.

As before, since the generated key is an unbalanced key it can only be used for encryption/decryption
and key exchange. It cannot be used for signatures.

4 Generating standard RSA keys

One could wonder whether the techniques described in the previous sections can be used to speed up
generation of standard RSA keys. We show that at the moment these techniques do not appear to
improve the generation time for a 1024 bit key. For shorter keys, e.g. 512 bits keys, we get a small
improvement. In what follows we show how to generate a normal RSA key, N = pq, with the help of
two servers.

We wish to generate an RSA modulus N = pq where p and ¢ are each 512-bits long. As before,
we wish to offload the primality test to the servers. To do so we must hide the moduli p and ¢ and
the exponents p — 1 and g — 1. The basic idea is to simultaneously test primality of both p and ¢. For
each pair of candidates p and ¢ the Pilot computes N = pg and sends N to the servers. The servers
carry out the exponentiations modulo N. To hide the exponents p— 1 and ¢ — 1 we share them among
the two servers as in the last section.

The resulting algorithm is similar to that for generating unbalanced keys. In fact, the server-side is

102


cameras
Text Box
102


identical. The algorithm works as follows. Repeat the following steps until a standard RSA modulus
is found:

Step 1: Pilot generates two candidates p, ¢ so that neither one is divisible by small primes. We refer
to p and ¢ as probable primes.

Step 2: Pilot computes N =p.q and ¢(N) = N —p — g+ 1. Pilot picks a random g € Z},.
Step 3: Pilot picks random integers ¢; and @9 in the range [—N, N] such that ¢ + @2 = ¢(N)/4.
Step 4: Pilot sends (N, g, 1) to server 1 and (N, g, —p2) to server 2.

Step 5: Server 1 computes X; = ¢g¥* (mod N). Server 2 computers Xo = g~¥2 (mod N). Both
results X7 and X5 are sent back to the pilot.

Step 6: Pilot checks if X; = +X5 mod N. If so, the algorithm is finished and N = pq is declared as
a potential RSA modulus. Otherwise, the algorithm is restarted in Step 1.

Step 7: The Pilot locally runs a probabilistic primality test to verify that p and ¢ are prime. This is
done to ensure that the servers returned correct values.

First, we verify soundness of the algorithm. In step 6 the Pilot is testing that X; = + X5, namely
that g¥* = g~¥? mod N. That is, we check that g#1T%> = g#(N)/4 = +1 mod N. Clearly, this condition
holds if p and ¢ are both primes. Furthermore, it will fail with overwhelming probability if either p
or g are not prime. Hence, Step 7 is reached only if N = pq is extremely likely to be a proper RSA
modulus. Step 7 then locally ensures that p and g are primes.

Security To analyze the security properties of the algorithm we must argue that the untrusted
servers learn no information of value to them. During the search for the RSA modulus many candidates
are generated. Since these candidates are independent of each other, any information the servers learn
about rejected candidates does not help them in attacking the final chosen RSA modulus. Once the
final modulus N = pgq is generated in Step 2, each server is sent the value of N and ¢; where ¢ is either
1 or 2. The modulus N will become public anyhow (it is part of the public key) and hence reveals
no new information. Now, assuming servers 1 and 2 cannot communicate, the value ¢; is simply a
random number (from Server 1’s point of view). Server 1 could have just as easily picked a random
number in the range [—N, N] itself. Hence, ¢; reveals no new information to Server 1. As long as
Server 1 and Server 2 cannot communicate, no useful information is revealed about the factorization
of N. If the servers are able to communicate, they can factor N.

Performance FEach iteration in our algorithm is much faster than the classic RSA key generation
approach of Section 2.1 — we offloaded the expensive exponentiation to a fast Pentium machine.
Unfortunately, the number of iterations required until an RSA modulus is found is higher. More
precisely, suppose in the classic approach one requires k iterations on average until a 512-bit prime
is found. Then the total number of iterations to find two primes is 2k on average. In contrast, in
our approach both p and ¢ must be simultaneously prime. Hence, k? iterations are required. We
refer to this effect as a quadratic slowdown. When generating a 1024 bit modulus the value of k is
approximately 14. So even though we are able to speed up each iteration by a factor of 5, there are
seven times as many iterations on average. Therefore when generating a standard 1024 bit key these
techniques do not improve the running time. When generating a shorter key, e.g. a 512 bit key, the
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quadratic slowdown penalty is less severe since k is smaller (9 rather than 14). For such short keys
we obtain a small improvement in performance.

Similarly, when generating keys with the help of a single server, the quadratic slowdown outweighs
the reduction in time per iteration. It is an open problem to speed up server aided generation of
standard RSA keys.

5 Experiments and implementation details

5.1 Implementation details

The two main components of our implementation were the cryptographic and networking modules.
SSLeay provided for the cryptographic code on both the server (Pentium IT 400Mhz) and PalmPilot
side. In the case of the Pilot, we used SSLeay code that had been previously ported by Ian Goldberg.

5.1.1 Networking

We connect the pilot to a Windows NT gateway running RAS (Remote Access Service) through a
serial-to-serial interface. The function of the gateway was to provide TCP/IP access to the network.

In our single server implementation, we used the gateway as our assisting server while in our dual
server implementation, we used the gateway and another local machine.

Our networking layer abstracts the secure communication of BigIntegers to and from the PalmPilot.
The network layer packs a number of Biglntegers into a buffer and sends the entire buffer at once.
The receiving side unpacks the buffer and processes it as required.

5.2 Experiments

Tables 1 and 2 show the results we obtained when generating 512, 768 and 1024 bit RSA keys. The
network traffic column measures the amount of data (in bytes) exchanged between the Pilot and the
servers. We generate keys using three methods:

(1) Local: Key generated locally on the Pilot (no interaction with a server).
(2) One server: Pilot aided by a single untrusted server.

(3) Two servers: Pilot aided by two untrusted servers.

As expected we see that generating unbalanced keys with the aid of one or two servers leads to
a performance improvement over generating keys locally on the PalmPilot. The rest of this section
discusses these experimental results.

We note that the key factor that determines the time it takes to generate an RSA key is the
time per iteration (the time to sieve and exponentiate one probable prime p). This number is more
meaningful than the total running since since the total time has a high variance. More precisely, the
number of iterations until a prime is found has high variance. Our tables state the average number of
iterations we obtained.

In our experiments, we carried out trial division on a candidate prime using the first 2048 primes
(upto approximately 17,000). In all our experiments we observed that the server’s responses are
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Sieve Server Exp. total time/ average total net
time(ms) | time(ms) | time(ms) | iter.(ms) | num. iter. time traf.
Local unbal. 3,805 21,233 25,038 18.16 7.5min.
Local norm. 3,805 21,233 25,038 36.32 15.16min.
One serv. | unbal. 3,516 955 6,995 11,467 14.5 2.Tmin. 5,568
Two serv. | unbal. 3,587 1,462 5,156 12.75 1.1min 8,160
Two serv. | norm. 7,850 820 0 8,720 406 59min 311,808

Table 1: Statistics for different key generation methods (1024 bit keys)

instantaneous compared to the Pilot’s processing time. Consequently, improving server performance
will only marginally affect the overall running time.

5.2.1 Generating a 1024 bit key

Table 1 shows detailed timing measurements for generating 1024 bit RSA keys. Our breakdown of
timing measurements follows the description in Section 2.1. The first column shows the time to pick a
probable prime, the second shows the time the Pilot spent waiting for the server to respond, the third
shows the time to exponentiate on the PalmPilot (not used in the two-server mode). The last column
shows the total network traffic (in bytes).

The first two rows in Table 1 measure the time to generate keys on the Pilot. The first column
represents the time to generate an unbalanced key, the second represents the time to generate a normal
N = pq key. Since an unbalanced key requires only one prime (the other is a random number) the
number of iterations for locally generating an unbalanced key is half that for generating a normal key.

When comparing the time per iteration for local generation and two server generation, we see that
using two servers we get an improvement of a factor of 5. Using one server we obtain an improvement
of a factor of 2. The average number of iterations is approximately the same in all three methods.
Note that the improvements are a result of speeding up (or eliminating) the exponentiation step on
the PalmPilot. Observe that when two servers are used the bottleneck is the sieving time — the time
to generate a probable prime p.

On average, 406 iterations are needed to generate a normal RSA key (N = pq) with the aid of two
servers. The large number of iterations is a result of the quadratic slowdown discussed in Section 4.
Even though each iteration is much faster than the corresponding value for local generation, we end
up hurting the total generation time.

Our algorithms require only a few kilobytes of data transfer between the Pilot and the servers.
The traffic generated is linear in the number of iterations which explains the large figure for two server
normal key generation.

5.2.2 Generating various key sizes

From Table 2 we see that the total iteration time increases almost linearly with key size for dual server
aided generation. Indeed, the dominant component of each iteration is sieving, which takes linear time
as a function of the key size. The expected total time for generating the key is the product of the
time-per-iteration and the expected-number-of-iterations.

Observe that the improvement over local generation is less significant for shorter keys than for
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512 bits 768 bits 1024 bits

num. | time/ net || num. | time/ net num. | time/ net

iter. | iter.(ms) | traf. || iter. | iter.(ms) | traf. iter. | iter.(ms) | traf.
Local unbal. 9.15 3,550 10.53 | 8,215 18.16 | 25,038
Local norm. 18.3 3,550 21.1 8,215 36.32 | 25,038
One serv. norm. || 9.3 | 4,546 | 1,785 | 14.8 | 7,644 | 4,262 | 145 | 11,467 | 5,568
Two serv. unbal. 9 2,492 2,880 || 12.55 3,687 6,024 || 12.75 5,156 8,160
Two serv. norm. 26 4,364 9,984 || 119.7 6,560 68,947 || 406 8,720 311808

Table 2: Statistics for different key sizes

longer keys. For instance, for a 512 bit key, two servers improve performance by only 50%. For a 1024
bit key the improvement is a factor of 5. The reason is that for smaller keys, the primality test is less
of a dominating factor in the running time per iteration (we use the same size sieve, 2048 primes, for
all key sizes). Hence, reducing the exponentiation time has less of an effect on the the total time per
iteration.

6 Conclusions

At the present using RSA on a low power handheld is problematic. In this paper we study whether
RSA’s performance can be improved without a loss of security. In particular, we ask whether an
untrusted server can aid in RSA key generation. We wish to offload most of the work to the server
without leaking any of the handheld’s secrets.

We showed a significant improvement in the time it takes to generate an unbalanced RSA key.
With the help of two isolated servers we obtained a speed up of a factor of 5. With the help of a single
server we obtained a speed up of a factor of 2. For normal RSA keys, N = pg, we cannot improve the
running time due do the guadratic slowdown problem discussed in Section 4. It is an open problem to
speed up the generation of a normal RSA key using a single server. In all our algorithms the load on
the server is minimal; our experiments show that even though the server is doing most of the work,
the PalmPilot does not produce candidates fast enough to fully occupy the server. Our code available
for anyone wishing to experiment with it.
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1 Introduction

Computers and communication networks have become an integral part of many people’s daily lives. Systems
to facilitate commercial and other transactions have been built on top of large open computer networks. These
transactions must often have some legal significance if they are to be useful in real life. Non-repudiation is
one of the essential services necessary for attaching legal significance to transactions and information transfer
in general.

Existing techniques for non-repudiation are based primarily on either symmetric or asymmetric crypto-
graphy. Practically secure symmetric techniques are computationally more efficient but require unconditional
trust in third parties. “Unconditional” means that if such a third party cheats, the victim cannot prove this
to an arbiter (e.g., a court). Practically secure asymmetric techniques (which we refer to as “traditional
digital signatures”) are computationally less efficient but can be constructed in a way that allows one to
prove cheating by any third parties involved. We call a third party whose cheating can be proven to an
arbiter a verifiable third party.

We present a novel non-repudiation technique called Server-Supported Signatures, S3. It is based
on one-way hash functions and traditional digital signatures. Like well-constructed asymmetric techniques,
S3 uses only verifiable third parties. However, for ordinary users, S? limits the use of asymmetric crypto-
graphic techniques to signature wverification. All signature generations are done by third parties, called
signature servers. For some signature schemes, e.g., RSA with a public exponent of 3, verifying signatures
is significantly more efficient than generating them.

2 Background and Motivation

The International Standardization Organization (ISO) is in the process of standardizing techniques to provide
non-repudiation services in open networks. Current versions of the draft ISO standards [5] identify various
classes of non-repudiation services. Two of these are of particular interest:

¢ Non-repudiation of Origin (NRO) guarantees that the originator of a message cannot later deny
having originated that message.

e Non-repudiation of Receipt (NRR)® guarantees that the recipient of a message cannot deny having
received that message.

Non-repudiation for a particular message is obtained by constructing a non-repudiation token. The
non-repudiation token must be such that it can be verified by:

o the intended recipients of the token (e.g., in the case of NRO, the recipient of the message; in the case
of NRR, the originator of the message), and

e in case of a dispute, by a mutually acceptable arbiter.
The draft ISO standards divide non-repudiation techniques into two classes:

o Asymmetric non-repudiation techniques are based on digital signature schemes using public-key crypto-
graphy. The main (and probably the only) difficulty in using digital signature schemes is the compu-
tational cost involved. This is a particularly serious issue when “anemic” portable devices (like mobile
phones) are involved.

Non-repudiation is based on certification of the signer’s public key by a certification authority. Trust in
this certification authority can be minimized by an appropriate registration procedure. For example, the
signer and the authority may be required to sign a paper contract listing the signer’s and certification
authority’s public keys, responsibilities, and liabilities, possibly in front of a notary public. In the
worst case, the certification authority could cheat the user by issuing a certificate with a public key

11SO documents call this “non-repudiation of delivery (NRD).” We use the term “receipt” because we feel that the term
“delivery” is more appropriate to describe the function performed by the message transport system.
g
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chosen by a cheater. But the supposed signer could deny all signatures based on this forged certificate
by citing the contract signed during registration. Thus, trust is reduced to trust in the verifiability of
the registration procedure.

o Symmetric non-repudiation techniques are based on symmetric message authentication codes (MACs)
and trusted third parties that act as witnesses. Generating and verifying message authentication codes
are typically low-cost operations compared to digital signature operations.

The signer has to trust the third party unconditionally, which means that the third party could cheat the
user without giving the user any chance to deny forged messages. One could reduce this trust by using
several third parties in parallel or by putting the third party into tamper resistant hardware. These
two approaches increase both cost and complexity but neither of them solves the problem completely.

In the following we present a new, low-cost technique for non-repudiation services, called server-supported
signatures. Tt uses both traditional digital signatures (based on asymmetric cryptographic techniques) and
one-way hash functions in order to minimize the computational costs for ordinary users. Our main motivation
arises from the typical mobile computing environments where the mobile entities have considerably less
computing power than do static entities.

3 Server-Supported Signatures for Non-repudiation of Origin

3.1 Preliminaries: One-way Hash Functions

Intuitively, a one-way function f() is a function such that given an input string z it is easy to compute f(z),
but given a randomly chosen y it is computationally infeasible to find an z’ such that f(z') = y. A one-way
hash function is a one-way function h() that operates on arbitrary-length inputs to produce a fixed length
value. The term z is called a pre-image of h(z). A one-way hash function h() is said to be collision-resistant
if it is computationally infeasible to find any two strings z and z’ such that A(z) = h(z'). Collision-resistance
implies one-wayness [13, Section 7.2]. A number of efficient and allegedly one-way hash functions, such as
SHA[8], have been invented. One-way hash functions can be recursively applied to an input string. The
notation h’(z) denotes the result of applying h() i times recursively to an input z. That is,

B (x) = h(h(h(...h(z)...))
—_———
i times
Such recursive application results in a hash-chain that is generated from the original input string:

ho(:t:) =z, hl(m), o h(2)

3.2 Model and Notation
We distinguish three types of entities in the system:

e [sers — participants in the system who wish to avail themselves of the non-repudiation service while
sending and receiving messages among themselves.

e Signature Servers — special entities responsible for actually generating the non-repudiation tokens on
behalf of the users.

o (Certification Authorities — special entities responsible for linking public keys with identities of users
and servers.

Signature servers and certification authorities will be verifiable third parties from the users’ point of view.

All entities agree on a one-way, collision-resistant hash-function h() and a digital signature scheme.
Entities should “personalise” the hash function. For example, this can be done by always including their
unique name as an argument: using h(O, z), where O is the entity computing the one-way hash. We use
ho() to refer to the personalised hash function used by O.
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The result of digitally signing a message = with signature key SK is denoted by (z)SK. We also assume
that, given (z)SK, anyone can extract z from it provided they have the public key corresponding to SK.
The users’ security depends on the one-way property of ho(), which must hold even against the servers.
In practice, this is not a problem because hash functions such as SHA are one-way for all parties. We
note, however, that so-called cryptographically strong hash-functions are usually invertible for the party
that generated the hash-function.

In order to minimize the computational overhead for users, ho() must be efficiently computable, and
digital signatures must be efficiently verifiable. Only signature servers and certification authorities need to
have the ability to generate signatures. SHA as hash function and RSA with public exponent 3 as signature
scheme would be reasonable choices.

Each user, O (O as in Originator) generates a secret key, Ko, randomly chosen from the range of ho().
Based on Ko, user O computes the hash chain Kg, K(l), ...K}, where

K& = Ko, Kb = hi5(Ko) = ho(K5™

PKo = K§ constitutes O’s root public key. Root public key K will enable O to authenticate n messages.
This 1s not a limitation: before the old root public key is consumed completely a new root public key can
be generated and authenticated using the old root public key.

Each signature server S generates a pair of secret and public keys (SKs, PKg) of the digital signature
scheme. Each certification authority, C'A, does the same. The C A is responsible for verifiably binding a user
O (server S) to her root public key PKo (its public key PKg). We assume that the registration procedure
is constructed such that C'A becomes a verifiable third party.

Notation Summary
ho() - one-way collision-resistant hash function for O
SKx - secret key known only to entity X
K& - user O’s (n — i)-th public key
()SK - digital signature on message z with secret key SK

[m] - Message m sent via a confidential channel

3.3 Initialization

To participate in the system, a user O chooses a signature server S that shall be responsible for generating
signatures on O’s behalf, generates a random secret key Ko, and constructs the hash chain. As will be
described below, O can cause S to transfer the signature generation responsibility to another signature
server S', if required (e.g., because O is a mobile user who wishes to always use the closest server available).

O submits the root public key PKo = K3 to a C'A for certification. A certificate for O’s root public key
is of the form

Certo = (O, n, P[&ro, S)S[{CA

We ignore all information typically contained in a certificate but not relevant to the discussion at hand, e.g.
organizational data such as serial numbers and expiration dates. The registration performed by O and C'A
must be verifiable, as discussed above. C'A may make the certificate available to anyone via a directory
service. O then deposits the certificate received from C'A with S.

Each signature server S acquires a certificate containing PKg from its CA. As these are ordinary public
key certificates, we do not describe them here.

For the sake of simplicity, we do not include the certificates in the following protocols. They might be
attached to other messages or retrieved using a directory service. We assume that the necessary certificates
are always available to anyone who needs to verify a signature.

3.4 Generating NRO Tokens

The basic idea is to exploit the digital signature generation capability of a signature server to provide non-
repudiation services to ordinary users. The basic protocol, providing non-repudiation of origin, is illustrated
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in Figure 1. We assume that a user O wants to send a message m along with an NRO token to some recipient
R. The first protocol run uses ¢ = n; 7 is decreased during each run.

1. O begins by sending (O, m, i) to its signature server S along with O’s current public key K% in the
first protocol flow (in case O does not want to reveal the message to S for privacy reasons, m can be
replaced by a randomised hash of m, computed using a collision-resistant hash function).

2. S verifies the received public key based on O’s root public key (and O’s certificate obtained from C'A),
i.e., checks that hg_i(Ké) = PKo. The signature server S has to ensure that only one NRO can be
created for a given (0,4, K5). If a message on behalf of O containing K has not yet been signed,
S signs (O, m, i, Ké), records Ké as consumed, and sends the signature (which we call the candidate
non-repudiation token) back to O in the second flow.

3. O verifies the received signature and records Ké as consumed by replacing ¢ by i — 1. The NRO token
for R now consists of
(0O,m,i,K5)SKs, Kiy'!

O produces this token which actually authenticates m, by revealing Ké_l.

In Figure 1 we assumed that the NRO token is sent to R via S in the third flow. Alternatively, O can
send the token directly to R.

. 1A
O,m,1, K¢,

(0,m,i,Ki)SKs

Kyt (O,m,i,K;)SKs, K5*

Figure 1: Protocol providing non-repudiation of origin.
K is referred as the token public key of the (n—i+1)th non-repudiation token, (O, m, i, K)SKs, Kg_l.
Note that O must consume the token public keys in sequence and must not skip any of them. In particular,
O must not ask for a signature using KZO_1 as token public key unless she has received S’s signature under
K¢ . Otherwise, S could use that to create a fake non-repudiation token, which O cannot repudiate during
a dispute.

3.5 Dispute Resolution

In case of a dispute, R can submit the NRO to an arbiter. The arbiter will verify the following:
e the public keys are certified by C'A,
e the signature in the token by the signature server is valid,
e the token public key is in fact a hash of the alleged pre-image in the token, and

e the root public key can be derived from the token public key by repeated hashing.
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If these checks are successful, then the originator is allowed the opportunity to repudiate the token by

e proving that C'A cheated:

— If O has registered with C'A, O can show a certificate on a different root public key.

— Otherwise C'A will be asked to prove that the root public key was registered by O (i.e., by showing
the signed contract with O).

e proving that S cheated by showing a different non-repudiation token corresponding to the same token
public key.

Note that in case C'A is honest, to claim falsely that O has sent a message m’, a cheating R has to
produce an NRO token of the form:

(O,m' i, K})SKs, K5

If O has not revealed Ké‘l yet, then one-wayness of ho() implies that anyone else will find it computa-
tionally infeasible to generate this NRO token, even if Kb is known. If O has already revealed Kf)_l she must
have sent K}, to S before. According to the protocol, O reveals Ké_l only if she has received a signature
from S under K which satisfied her. Therefore, O can show a different token corresponding to the same
token public key.

Suppose an adversary of O successfully breaks the one-wayness of ho() and obtains an NRO token of the

form: '
(O,m',i, K5)SKs, x

where ho(2) = ho(K5"). If 2 is different from K !, then on being challenged with this NRO token, O can
reveal Ké_l, proving that the system has been broken. This is known as the “fail-stop” property. Assuming
that ho has a uniform distribution, the domain used must be larger than the range of ho in order to achieve a
reasonable level of fail-stop property. We can do this by slightly modifying the building procedure to include
a random padding to the input of hp during the computation of every link in the chain. The sequence of
random pads used are generated using a pseudo-random number generator whose seed is committed to in
the certificate.

4 Server-Supported Signatures for Non-repudiation of Origin
and Receipt

Non-repudiation of receipt (NRR) can be easily added to the basic protocol. Before sending Ké_l to R, S
can ask R for an NRO token for “NRR”|m, which is then passed on to O. This is illustrated in Figure 2.
The NRR token consists of:

(R, “NRR”|m, j, K3,)SKs, K ' r

Square parentheses ([ ]) indicate that the message contained within them is sent via a confidential channel.
As this protocol is just two interleaved instances of the basic NRO protocol, it still guarantees that O and
R can repudiate all forged NRO and NRR tokens, respectively. Note that this protocol actually implements
fair-exchange of the NRO token for m and its NRR token, based on S as a trusted third party. If S behaves
dishonestly, no fairness can be guaranteed: O might not receive the NRR token or R might not receive the
NRO token.

The protocol as depicted in Figure 2 allows the possibility that R may refuse to send the NRR token after
having received the candidate NRR token from S (from which R can extract m). An alternative approach is
to include only a commitment to the message m in the candidate NRO token instead of the actual message
itself. However, R has to trust that S will in fact send m after R has already acknowledged having received
it. Note that if O and R happen to use different signature servers, additional inter-server message flows will
be necessary.
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O,m,i, KL, R

(O, m,i, K})SKs

(R, “NRR”|m, j, K3,)SKs

-i—1
Kg

ci—1
Ky

(R, “NRR”|m, j, K3)SKs

(K5

(O,m,i, KL)SKs, K51

Figure 2: Protocol providing non-repudiation of origin and receipt.

O,m,i, K4, R

(O, R, “NRX”|m, i, j, Kb, KL, )SKs

L

j—1
KR

(O, R, “NRX”|m, i,j, Kb, KL, )SKs

(K]

i—1
KO

Figure 3: Protocol providing integrated non-repudiation of origin and receipt.

This protocol allows the possibility that either the NRO token or the NRR token may be optional, at
the cost of an extra signature by S. The entire protocol has eight message flows. Further, the NRO and
NRR tokens are linked only by the hash of the message. In environments where both NRO and NRR are
mandatory, a modified protocol as shown in Figure 3 can be used. It results in a combined NRO and NRR
token: ' '

(O, “NRX”|m, i, 5, K5, K3)SKs, K5t K

The modified protocol has only seven message flows and requires only a single signature by S.

5 Variations on the Theme

5.1 Reducing Storage Requirements for Users

In order to deny forged non-repudiation tokens, O has to store all signatures received from S, which might
be a bit unrealistic for a device that is not even able to compute signatures. One can easily avoid this storage
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problem by including an additional field A in S’s signature that serves as a commitment on all the previous
signatures made by S for that hash chain; i.e., an NRO token looks like

NRO' := ((0O,m;,i, K5, H)SKs, K51)

The value H' is recursively computed by H" := Certp and H'~! := f(H?, NROi). The function f() is
a collision-resistant one-way hash function?. NRO' is an NRO token on message m; using the token public
key K} .

O has to store only the last value H® and the last signature received from S. S has to store all signatures,
and has to provide them to O in case of a dispute. If S cannot provide a sequence of signatures that fits
the hash value contained in the last signature received by O, the arbiter allows O to repudiate all signatures
and assumes that S cheated.

This idea of chaining previous signatures was used by Haber and Stornetta [3] for the construction of
a time stamping service, based on the observation that the sequence of messages in H' cannot be changed
afterwards. One can combine their protocols with ours, using S as a time stamping server, as explained in
Section 6.1.

5.2 Increasing Robustness

As mentioned above, a signature server must sign exactly one message for a given user per public key (Ké) in
the hash chain. However, anyone can send a signature request in the form of the first flow, i.e., (O, m, 1, Ké).

If the signature server does not subsequently receive the corresponding pre-image of the current public
key (Kg_l), the current public key is rendered invalid in any case. This implies that an attacker can succeed
in invalidating an entire chain of a user by generating fake signature requests in her name.

An obvious solution would be to require O and S to share a secret key to be used for computing (and
verifying) a message authentication code over the first protocol flow.

An alternative solution is to give users the ability to invalidate token public keys without having to
create a new chain. The construction is only slightly more complicated than the basic protocol: instead of
one chain, each user generates two chains (computed with two different hash functions): K3,..., K and
K3, .. KQ.

Each token public key is now a pair of hash values, say, (K}, Ko) If O receives the candidate token
(O,m,i, K}, f{é)SKS, she can either accept or reject it;

e O accepts by revealing Ké_l. The next token public key is (Ké_l,f{(j)).
e O rejects by revealing Ké_l. The next token public key is (K5, Ké_l).
On receiving Kf)_l or Ké_l, server S creates

e the non-repudiation token (O, m, i, j, Ké, Ké_l)SKS or

e the invalidation token (O, “INV”|m, i, j, K, f((j)_l)SKS

respectively.
The additional signature by S is necessary because for one signature

(0,m,i,j, Kb, KL)SKs

it can easily happen that both Ké‘l and Kf;l become public, i.e., the combination of the first signature with

one pre-image would not be unambiguous and recipient R could not depend on what he receives. Instead
of making two signatures, S can instead include two commitments h(ayro) and h(aryv) of two random
numbers aygro and ayyy in the first signatures. Then, S can release one of the two random numbers to
O. The random number together with the first signature serves as either the NRO token or the invalidation
token. Note that a cheating S could generate both tokens for the same token public key, but O could easily
prove that S cheated by showing the token received.

2Note that f() may be the same as hg(). However, collision-resistance is a mandatory property for f() (if S succeeds in
breaking the collision-resistance of f(), it can forge signatures which O may not be able to refute since O no longer retains all
past signatures). As we mentioned in Section 3.5, collisions in hg() are not equally catastrophic from the point-of-view of O.
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5.3 Support for Roaming Users

In the basic protocol, the trust placed on the signature server is quite limited — it is trusted only to protect
its secret key from intruders and to generate signatures in a secure manner. This limited trust enables a
mobile user to make use of a signature server in foreign domains while travelling. Normally the signature
server in the user’s home domain will be in charge of the user’s hash chain. Whenever the user requests to
be transferred to a signature server in a different domain, an agreement could be signed by the user and the
old signature server authorising the transfer of charge of the user’s hash chain. As usual, the pre-image of
the current token public key, used to sign this agreement will become the next token public key.

In other words, instead of having a single root public key certificate (which includes the identity of the
“home” signature server), a chain of public key certificates could be used. The chain consists of the root
public key certificate signed by the home CA and one hand-off certificate every time the charge for the user’s
public key has changed hands:

(O, n, [(8, SO)S[(CA

(O,n;, K, S1)SKs,_,, for 0<n;<n,I>0

where, Sy = S and n; is the index of the token public key used to sign the request for the /! hand-off (from
Si_1 to S[).

To effect a change in charge during a handoff, the following procedure is carried out:

1. The user O sends a hand-off request to both the current signature server S;_; and the intended
signature server S;. As this request must be non-repudiable, this step is essentially a run of the basic
protocol to generate a NRO token with a message that means “hand-off from S;_; to S; requested.”

N

Si—1 will issue a candidate NRO token for the request using the current token public key K5' and O

will validate the token by revealing K3\~ ").

2. When the NRO token is received and verified by S;_1, it generates a corresponding hand-off certificate
described in the previous paragraph and sends it to both O and S;. It will no longer generate signatures
on behalf of O for that hash chain unless charge is explicitly transferred back to it at some point. In
addition, it will store both the hand-off certificate and the corresponding NRO token.

3. When S; has received both the NRO token and the hand-off certificate, it will be ready to generate
signatures on behalf of O, starting with Kg’_l as the first token public key.

5.4 Key Revocation

As with any certificate-based system, there must be a way for any user O to revoke her hash chain.? If the
currently secret portion of O’s hash chain (say Ké, fori=p—1,p—2,...1) has been compromised, O will
detect this when she attempts to construct an NRO the next time for the token public key K%: S will return
an error indicating the current token public key K} (q < p) from S’s point of view. O can attempt to limit
the damage by doing one of the following:

1. invalidate all remaining token public keys Ki(i = q,¢ — 1,...1) by requesting NRO tokens for them,
or

2. notifying S to invalidate the remaining hash chain by sending it a non-repudiable request to that effect
and receiving a non-repudiable statement from S stating that the hash chain has been invalidated.
This can be implemented similar to the invalidation tokens described in Section 5.2 — except in this
case the token would invalidate the entire chain and not just a single key.

3Revocation by authorities is not an issue in this system because the user has to interact with the signature server for the
generation of every new NR token anyway.
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5.5 General Signature Translation

In a more general light, the signature server in S can be viewed as a “translator” of signatures: it translates
one-time signatures based on hash-functions into traditional digital signatures. The same approach can be
used to combine other techniques such that the result provides some features that are not available from the
constituent techniques by themselves.

For example, one could select a traditional digital signature scheme (say D;) where signing is easier than
verification (e.g. DSS) and one (say Ds) where verification is easier than signing (e.g. RSA with a low public
exponent) and construct a similar composite signature scheme. The signature key of an entity X in digital
signature scheme D is denoted by SK2. To sign a message m, an originator O would compute (m)SKg1
and pass it along with m to the signature server S. If the server can verify the signature, it will translate it
to (m, (m)SKgl )SK?? In other words, the composite scheme allows digital signatures where both signing

and verification are computationally inexpensive.

6 Applications

6.1 Building a Secure time stamping Service

In Section 3.5, we argued that S® meets the standard requirements of a signature scheme. The structure of
the non-repudiation tokens result in an additional property: non-repudiation tokens issued by a given user
have a strict temporal ordering among them.

Recall the structure of the non-repudiation tokens described in Section 5.1:

NRO' := ((0O,m;,i, K5, H)SKs, K5)

where,

H™ := K3, H™'= f(H',NRO')

If f() is collision-tesistant, the chaining factor H® imposes an order among the messages signed. We call this
a token chain. Suppose that '
{NRO'},i=n...p,p—1...q

indicates the token chain of (NRO tokens issued by) a certain user O at a given time. It is easy to see that
all NRO?, ¢ < p, must have been created after NRO". As NRO is a commitment on m,, it follows that
O knew m, and showed it to S before NRO? was created. O and S, either by themselves or in collusion,
cannot create NROP after NRO? was created. This enables us to build a time stamping service based on S3.

Ideally, a time stamping system must be able to impose a total order on all the messages time stamped.
We can adapt the approach used in [3], where S generates a chaining factor from a single, global chain. Every
signature generated by the server has a chaining factor from this global chain. To verify a given time stamp,
one needs to know the owners of the previous (and if necessary the subsequent) time stamps generated by
the time stamping server.

In Section 4, we outlined a protocol that results in a combined NRO/NRR, token. Chaining factors can
be included in this token as well. The resulting NR token will be

NRY . = (A, “NRX”|my;), i, §, K4, K&, HYy HL)SKg, Ki7 K471

where ' ' '
H} =K}, Hy'=f(Hy NROY)
HY =K%, Hi ' = f(H), NROY),

and NRZB is the same as NROQ and NROfB. Each time A sends a message to B using the modified protocol
resulting in a combined NRX token, the token chains of A and B are “synchronised:” any NRO¥,,p > i must
have been created before any NRO%L, ¢ < j. Although this does not necessarily result in a total order, the
more chains are synchronised after a message has been signed, the greater the number of witnesses to the
time of signing.
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Thus, S? can be used to temporally link the tokens generated by S on behalf of multiple users. A practical
implementation of a time stamping service can be constructed by requiring that S include a time stamp in
each signature generated. The aim of this construction is not to provide an absolute guarantee that the time
stamp in a document is precisely correct. Instead, the temporal ordering property of S? signatures is used
to verify if the time stamp is plausible. In case of a dispute about the time stamp on a signature by A, the
token chains of all parties synchronised to A’s chain after the signature was made are examined (suppose
there are n such parties). If these token chains satisfy all the temporal ordering relationships discussed above
and if there is a sufficient number of honest parties among those linked to A’s token chain, then the time
stamp is probably correct. In this scenario, at least all but one of the n + 2 parties involved must collude in
order to produce a fake time stamp which cannot be proved to be a fake.

When digital signatures are used as a means to provide accountability, it is crucial to have unforgeable
time stamps embedded in the signatures. The usual technique to achieve this is to use a seperate, external
time stamping service is used in conjunction with a traditional digitial signature mechanism. The structure
of $3 makes it a signature scheme with an integrated unforgeable time stamping facility.

6.2 Applications with a Fixed Recipient

As the role of the signature server is verifiable, the recipient can also play that role. This is useful in
applications where several non-repudiable messages need to be sent to the same fixed recipient. An example
of this is a home-banking” (or electronic funds transfer) application, where customers send signed payment
orders to their bank.

Payments messages are of the form

m = (payee, amount, date)

When a payer wants to make a payment, he constructs a message of the above form and executes the normal
S3 protocol with the bank, resulting in an NRO token for the message. The bank then transfers amount to
the account of payee and issues a special NRR token, which can be its signature on the entire NRO token.
Optionally, it may also get a S> NRR token from the payee and forward it to the payee. The non-repudiation
tokens serve as evidence of the transaction.

The idea of using a hash chain for repeated, fized-value payments was suggested recently [9, 4]. We
have been able to use S? for payments of arbitrary values because S® provides non-repudiation of origin for
arbitrary messages.

7 Analysis

Computation: Ordinary users of S? need to be able to compute one-way hashes and to verify traditional
digital signatures. Only the signature servers and CAs are required to generate traditional digital signatures.
Key generation for ordinary users is also relatively simple: the user needs to be able to generate a random
number. In contrast, key generation in traditional digital signature systems is typically more complex,
involving, for example, the generation of large prime numbers. In summary, the computational requirements
for ordinary users of S are less than those using a traditional digital signature scheme offering comparable
security.

Storage: Using the improvement described in Section 5.1, users need to store only the last signature
received from S, the pre-image of the current token public key and the sequence number, and the public
keys needed to verify certificates.

Signature servers need to store all generated signatures in order to provide them to the users on demand.
The stored signatures are necessary only in case of a dispute. Therefore, they can be periodically down-loaded
to a secure archive.

Communication: The communication overhead of S3 is comparable to that of standard symmetric
non-repudiation techniques because a third party, S, is involved in each generation of a non-repudiation
token.

Using traditional digital signatures, the involvement of third parties can be restricted to exception han-
dling, whereas token generation is usually non-interactive. The price to be paid for this gain in efficiency is
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that revocation of signature keys becomes more complicated. Note that in S, revoking a key is trivial. O
simply has to invalidate the current chain.

Security: In the preceding sections, we demonstrated that as long as the registration procedure, the
digital signature scheme, and the one-way hash function are secure, both users and signature servers are
secure with respect to their respective objectives. Furthermore, the security of originators depends on the
strength of the hash function and not on the security of the digital signature scheme.

Additionally, we observe that in practice, traditional digital signature algorithms are not applied directly
to arbitrarily long messages. Instead, a collision-resistant, one-way hash function is first applied to the
message to produce a fixed-length digest or fingerprint which is then signed using the signature algorithm.
The overall security therefore depends on both the traditional digital signature algorithm and the hash
function. Signature servers typically have significantly more computational resources available to them than
do ordinary users. Hence they can choose a higher grade security (e.g. much longer signature keys) from a
given digital signature algorithm. Thus, S? gives ordinary users the ability to produce stronger signatures
than they could have been able to by using traditional signatures by themselves in the standard way.

8 Related Work

Although non-repudiation of origin and receipt are among the most important security services, only a few
basic protocols exist. See [2] for a summary of the standard constructions. We are not aware of any previous
work that aims to minimize the computational costs (at the protocol level) for ordinary users while providing
the same security as standard non-repudiation techniques based on asymmetric cryptography.

The efficiency problem as addressed by specific designs of signature schemes was mainly motivated by the
limited computing power of smart cards and smart tokens. [12] lists most known proposals. Typically they
are based on pre-processing or on some asymmetry in the complexity of signature generation and verification
(i.e., either sender or recipient must be able to perform complex operations, but not both). Note that
although server-supported signatures use a signature scheme that is asymmetric with respect to signature
generation and verification, ordinary users are never required to generate signatures; thus, both sender and
recipient are assumed to be computationally weak.

In his well-known paper [6], Lamport proposed using hash chains for password authentication over inse-
cure networks. There had been other, earlier proposals to use one-way hash functions to construct signatures.
Merkle has presented an overview of these efforts [7]. The original proposals in this category were impractical:
a proposal by Lamport and Diffie requires a “public key” (i.e. an object that must be bound to the signer
beforehand) and two hash operations to sign ewvery bit. Using an improvement attributed to Winternitz
involving a single public key (which is the n'® hash image of the private key) and n hash operations, one
can sign a single message of size logan bits. Merkle introduced the notion of a tree structure [7]; in one
version of his proposals, with just a single public key, it is possible to sign an arbitrary number of messages.
Nevertheless, it took either a large number of hash operations or a large amount of storage in order to sign
more than a handful of messages corresponding to the same public key.

Motivated by completely different factors, Pfitzmann et al. [10][11, Section 6.3.3] proposed a fail-stop
signature protocol which uses the same ideas as S3. There, the signature server is also the recipient of
the signature (which is a sub-case in the scope of S?), and the goal is to achieve unconditional security for
the signer against the server (in the sense of fail-stop signatures). The protocol has a similar structure as
the one in Section 1.* Because of the specific security requirements, all parties have to perform complex
cryptographic operations, and signatures are not easily transferable.

41t uses a so-called bundling function h() instead of the conceptionally simpler hash function used in S3. A value h(z) is used
as O’s current public key. To give a NRO token for message m to S, the signer O sends m to S, which answers by (m, h(z))SKs.
Finally O sends z to S, which terminates the protocol. The NRO token for S is (m, h(z))SKg,z. The consumed public key
h(z) can be renewed by including a new public key h(z') in m.
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Abstract

One-time signature (OTS) offer a viable alternative to public key-based digital signatures. OTS security is typically
based only on the strength of the underlying one-way function and does not depend on the conjectured difficulty of
some mathematical problem. Although many OTS methods have been proposed in the past, no solid foundation exists
for judging their efficiency or optimality. This paper develops a methodology for evaluating OTS methods and presents
optimal OTS techniques for a single OTS or a tree with many OTS’s. These techniques can be used in a seesaw mode to
obtain the desired tradeoff between various parameters such as the cost of signature generation and its subsequent

verification.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Modern networks and Internetworks are more
open than ever before, in an attempt to make in-
formation available on a ubiquitous basis. Net-
works are also faster than before, with available
bandwidths measured in Gb/s. However, instead
of alleviating congestion on the information
highway, this has only encouraged the transmis-
sion of greater numbers of large data objects, es-
pecially with the recent popularity of multimedia

presentations, voice- and video-conferencing, and
large-scale scientific computing. The composition
of network traffic has changed from yesterday’s
text files to today’s enormous datasets produced by
sophisticated remote visualization and rendering
tools.

These developments make it important to
maintain data integrity and privacy in a manner
that is both highly secure and efficient. Traditional
digital signature methods based on public key
cryptography are simply untenable from a per-
formance perspective. Furthermore, the security of
public key cryptosystems (e.g., RSA or DSS [1,2])
is based on complex mathematical problems, such
as factoring or discrete logarithms. The mathe-
matical basis is both a blessing and a curse: the
former because it lends itself to simple and elegant
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design, and the latter because there is no assurance
that there are no efficient algorithms for solving
the underlying mathematical problems.

One-time signature (OTS) provide an attractive
alternative to public key-based signatures. Unlike
signatures based on public key cryptography, OTS
is based on nothing more than a one-way func-
tions (OWFs). ! Consequently, OTSs are claimed
to be more efficient since no complex arithmetic is
typically involved in either OTS generation or
verification. In practice, security of traditional
public key-based digital signatures is based on two
factors: conjectured-hard mathematical problems
and the message digest function used to produce a
fixed-size digest from arbitrarily long input data.
(A secure message digest function suitable for this
purpose must be both one-way and collision-
resistant.) Using OTSs essentially allows us to
eliminate the first factor altogether.

The OTS concept has been known for over two
decades. It was initially developed by Lamport [6]
and subsequently enhanced by Merkle [7] and
Winternitz [8]. Bleichenbacher et al. [9-11] for-
malized the concept of OTS using directed acyclic
graphs (DAG:s).

In the simplest case, a message signer prepares
an OTS by first generating a random number r
which serves as a one-time private key. The signer
then securely distributes a one-time public key
h(r), where h(-) is a suitable collision-resistant
OWEF. This public key, sometimes also referred to
as an anchor value, is later used by the signature
verifier(s) to verify the signature.

A signature is constructed by revealing the one-
time private key r. A receiver (verifier) that obtains
7 (which may or may not be the same as ) checks
that it could only be have been generated by the
claimed signer by computing 4(#). If this value
matches the one-time public key A4(r), the OTS is
considered valid. This, in effect, allows the signing
of a predictable 1-bit value and provides one-time
origin authentication. In order to sign any 1-bit
value, two random numbers {ry,7} are needed.

! Examples of conjectured OWFs include DES [3], MD5 [4],
and SHA [5]. There is strong (albeit, folkloric) evidence as to
the existence of true OWFs.

This way, both i(ry) and Ah(ry) are pre-distributed
but at most one of {ry,r } is revealed as part of a
signature. The pair (ro, #(r)) represents an OTS of
message “0”, whereas (ry, 2(r)) is an OTS of “1”.

Merkle extended this method to allow the
signing of an arbitrary message. It begins by re-
ducing the message to a fixed-length quantity using
a collision-resistant message digest function, as is
customary with traditional public key signatures.
However, instead of transforming this quantity
with a private key, each bit has an associated OTS
and the signature for the entire message is repre-
sented as the concatenation of the OTS for each
“1” bit in the message digest, along with some
extra values to ensure that this per-bit signature
is not itself modified.

As stated, this algorithm requires the one-time
public keys for the OTSs to be distributed in a
secure fashion. Since this is typically done using
public key methods, the benefit of using efficient
OTSs is apparently lost. However in [7], Merkle
also introduced a scheme where these signatures
are embedded in a tree structure, allowing the cost
of a single public key signature (to sign the initial
anchor values) to be amortized over many OTSs.
In this formulation, signatures are longer, by at
most an order of magnitude. However, the extra
length (which was a concern two decades ago) is
negligible today owing to the high speed of mod-
ern networks.

Despite their performance advantage and in-
creased security, OTSs have remained on the pe-
riphery of security research since their inception.
In particular, no practical evaluation of OTS ca-
pabilities has been done. This open issue is pre-
cisely the topic of the present paper. In order to
obtain better understanding of OTS optimality, we
first address a more general issue of how to max-
imize the message size (of a message to be signed)
while minimizing the number of random quantities
to be used in OTS generation (and, hence, the
number of OWF operations). Our result leads us
towards an optimal OTS construction where effi-
ciency corresponds to the smallest number of
OWF operations used in both generation and
verification of an OTS. We then amend this defi-
nition of efficiency to take into account situations
where multiple verifications are necessary, e.g.,
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with multi-destination e-mail or, more generally,
secure multicast. This leads us to consider a
slightly different notion of optimality.

The outline of the paper is as follows. After
introducing Merkle’s signature algorithm in Sec-
tion 2, we generalize the OTS constructions and
present our optimal technique in Section 3. We
evaluate the performance of our OTS construction
in directed acyclic computation graph notation in
Section 4. Section 5 is for describing how to en-
code a message for the signature using our tech-
nique. We make the cost analysis of a single OTS
or a tree with many OTSs in Sections 6 and 7,
respectively. In Section 8, we present a method to
construct the optimal tree, more precisely we show
how to choose the optimal depth of this tree.
Section 9 discusses practical implementation as-
pects and possibilities for future work and Section
10 concludes this paper.

2. Merkles one-time signature construction

One notable and efficient OTS construction
is due to Merkle [12]. (Others can be found in
[13,14].) Assuming input messages of size b, let
s=(|logh] +1) and let n=>b+s. The signer
generates a secret key vector of size (b + 2s) of
random numbers:

R={R\,...,Ry,Lio,Li1,..., Lo, L1}

The signer then applies the OWF to each element
of the secret key vector and distributes the result-
ing public key vector to the intended verifier(s):

H(R) = (H(R:),...,H(Ry),H(L1o),
H(LLl)a e 7H(Ls,0)7H(Ls,l)>'

Subsequently, to sign a b-bit message m, the signer
counts the number of “1” bits in m, encodes the
count as an s-bit string and appends it to m. The
result is an n-bit message m’. The actual signature
SIG(m) is constructed as follows:

for i =1 to b do begin
if (m[i] == 1) then /* ith bit of m' is “1” */
release H(R;)
end /* for */
for i = (b+ 1) to n do begin

if (mfi] == 1)
release H(L;;)
else
release H(L;)
end /* for */

For example, if =4 (thus, n=7) and
m = 0101, then m' =0101010 and SIG(m)=
{R2,R4,L10,L21,L30}. The verifier checks the sig-
nature by applying H to each element of SIG(m)
and checking it against the public key vector H(R).

To summarize the cost of Merkle’s OTS con-
struction, the signer generates (b + 2s) random
numbers and performs as many OWF computa-
tions. Each verifier performs, on the average,
(b/2 4+ s) OWF computations. For example, for a
160-bit message (e.g., an SHAT1 digest), 176 and 88
OWF operations are needed to sign and verify,
respectively.

Despite its relatively low cost and simplicity, the
above is basically an ad hoc construction. No ar-
gument for its optimality has been provided in
Merkle’s work. Moreover, it remains unclear what
optimality means in the context of an OTS system.

3. One-time signature generalization

More generally, a message sender prepares a
signature by generating an n-clement random
number vector R = (ry,r,...,r,). He then com-
putes H(R) = (H(ry),H(r2),...,H(r,)) where H(-)
is a suitable OWF. The sender then securely dis-
tributes the one-time public key vector H(R) to
all intended verifiers.

Signature generation is the process of mapping
the input message into a subset S C R. S is then
attached to the message as its signature. To verify
S, each receiver computes a similar mapping from
the input message into a subset T of H(R). The
signature is considered valid only if 7 = H(S).

The mapping function must satisfy a condition
which we refer to as incomparability: for any
message D;, an attacker must be unable to find
another message D, such that F(D,) C F(Dy)
where F(D;) corresponds to signature subset S; for
the message D;. Otherwise, if the legitimate signer
distributes (D;, F (D)), the attacker could replace
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D, with D,, reduce the set F (D) to F(D,), and
obtain a valid message-signature pair (D5, F(D,)).

This leads us to ask the question: When R con-
tains n random numbers, how many distinct mes-
sages can be signed or in other words what would be
the maximum size of the message space?

For n = 1, the answer is one, and the signature
1s one random number. For n = 2, the answer is
two: the signature can be either »; or r,. If we were
to map a message onto the signature subset
{r1,r}, that choice would eliminate any other
subset, allowing a single distinct message.

In general, we observe that, for any »n, we can
obtain a valid message mapping by drawing from
all subsets containing p < »n random numbers.
Clearly, no one such subset can be the subset
of another, allowing us C(n,p) =n!/pl(n —p)!
distinct messages.

In [15], it is shown that for any #, the domain of
mapping M is greatest when p = [n/2]. This al-
lows us to sign any one of

5= (1) W

distinct messages, i.e., we are able to sign an
arbitrary (logB,)-bit message. For example, if R
contains four elements 1, 2, 3, and 4, then the
largest valid message set of R is

V={{1,2},{1,3},{1,4},{2,3},{2,4}, {3,4}}

which contains B4 = 6 elements.

By inverting this formula, and using Stirling’s
approximation, we can see that to represent 2°
distinct values, » must satisfy

B, > 2°,

Vamnnfe)
v/ (n/2e)" P

2\/2/mn > 2

or, after taking base 2 logarithm of both sides,

n—1g+/nn/2 > b. (2)
For b =128 (e.g., MDS5), n must be at least 132,

and each subset can be as small as size 64, since
C(132,64) > 2!3. For b =160 (e.g., SHAI), n

)

160 bits (e.g., SHA)

128 bits (e.g, MD3) 7

0 T T T T T
0 200 400 600 800 1000

hashes required for signature generation

hashes required for signature verification

Fig. 1. Signature generation/verification hash profile.

must be at least 165 (n = 164 is just barely insuf-
ficient), with subsets of size 75.

Note that we can freely increase n and decrease
p, or similarly, decrease » and increase p, provided
C(n,p) > 2" and the signer and verifier(s) decide
beforehand on the values of n and p. At one ex-
treme, as we have shown, there is the lowest n such
that there exists a p so that C(n,p) > 2°. At the
other extreme, one could choose #n = 2°, and allow
p = 1; this would correspond to the case where
there is a random number associated with each
possible message, and the sender simply picks the
appropriate one for each message to be signed!
(This is clearly an intractable storage problem.)

In Fig. 1, we show the number of random
numbers n versus the number of hashes required
for verification p, for two popular message (digest)
sizes.

We also observe that, for a valid (n,p) pair
satisfying C(n,p) > 2°, if the anchor values H(R)
are encrypted, the release of a subset in V' con-
taining p numbers can be used to exchange b bits
of confidential information, since no one observing
the p numbers can distinguish them from any
others, or verify them, without being able to de-

crypt H(R).

4. Efficiency assessment using directed acyclic
graphs

Bleichenbacher et al. [9-11] formalized the
concept of OTS using DAGs. They observed that
the structure of the OTS computation leading
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from the secret key components to the public key
can be represented as a DAG G = (V,E) with
vertex set 7 and and edge set E, where the vertices
correspond to the secret key, the intermediate re-
sults, and the public key, and where a directed
edge (v;,v;) in E indicates that v; is an input to the
OWF and computation resulting in v;.

In order to design a OTS based on a DAG,
there are two important requirements. First, every
OTS must be verifiable, i.e., the public key must be
computable from it. Second, in order to prevent
forgery, the set of signatures must satisfy the im-
comparability condition defined in previous sec-
tion.

If we assume that all the public-key components
are hashed in a binary tree to result in a single
public-key component, then an efficient OTS al-
gorithm can be formally defined as one in which
the size of the message space is maximized while
the size of the DAG is minimized. More precisely,
if 1g(I') is the number of message bits that can be
signed, the efficiency of a one-time digital signature
scheme I' for a DAG G with z = |V| vertices is
given by

o) =20,

In [10], the authors also presented their best graph
construction, for which the efficiency is approxi-
mately equal to 0.473. We will now prove that our
methodology provides a better construction in
terms of their notion of efficiency.

In the previous section, we showed that the
number of bits that can be signed using » random
numbers is upper bounded by n —lg+/mn/2. In
Fig. 2, we demonstrate that when we assemble the
DAG of our construction with » random numbers,
the number of vertices is equal to 2n + 1. Then the
efficiency is upper bounded by 0.5 as seen from Eq.

Q).

. n—Ilgy/mn/2

For b = 128 (e.g., MD5), this value is 0.4812 and
for b = 160 (e.g., SHA1), it is 0.4819. We observe
that both of them is better than the best con-
struction in [10].

public key

m)| ) () R

h(r

'y

7’4)

1 T2 T3 T4

Fig. 2. The DAG representation of our construction for n = 4
(z =2n+ 1 = 9) where the public-key components are hashed in
a binary tree to result in a single public-key component. To
make the OTS verifiable, the signature contains the random
numbers released as well as the hashes of unreleased random
numbers.

Other than the efficiency concerns, we claim
that our methodology is better than Bleichen-
bacher et. al.’s approach in two aspects:

e In practice, their proposed DAG construction is
very complex and hard to implement whereas
our combinatorial results are elementary and
easy to grasp.

e In [10], the authors did not discuss how to en-
code a specific message for the DAG they used.
In contrast, we provide an efficient method for
encoding a message for signature in the next
section.

5. Encoding a message for signature

Given a vector R of n random numbers, and a
valid message set V' of subsets each containing p of
those numbers, we have shown that we can sign
any one of C(n,p) distinct messages. In this sec-
tion, we describe the mapping M between messages
and the elements of V', and demonstrate how to
compute them efficiently.

Assume that the domain of M is composed of 2°
messages, and we have a way of representing each
of the messages as a b-bit integer m. Let any subset
Sin V be expressed as {R,, R,; . - -, Ra, }. Arrange
the subsets in 7 in lexically ascending order. For
example, for n = 4, p = 2, the subsets are ordered

{R1, R}, {R1, Rs}, {R1, Ra}, {Ro, R
{Ry,Rs},{R3,Rs}.
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Then the mapping m = M(S, V) of each subset S is
defined as the integer position of S in this list
representation of V. For example, in the above
case, M({Ry,R;},V) =2 and M({R;,R4},V) =6.
In general, for any n and p, the mapping of any
subset S = {R,,Rq,,--., R4}, Where ap =0 and
a; < a, <---<a,is given by

M@J@:1+5in§leﬁd). (4)

i=1 j=n—a;+1

Note that in order to compute the mapping for
any subset, for a given n and p, we need only
compute the binomial coefficients C(j,p — i) for i
from 1 to p, j from p+ 1 —i to n —i. Thus, each
mapping requires n —p — (n — a,) = a, — p addi-
tions.

Similarly, the mapping S=M"'(m,V) of a
message represented by the integer m can be
computed by subtracting binomial coefficients
until zero is reached. This requires a, — p additions
and comparisons. Pseudocode to do this conver-
sion is as follows:

my = m [* copy message to temporary value */
qg=1
for i =1 to p do begin
while my > C(n — g, p — i) do begin
my:==my— C(n—q,p—1i)
qg:=q+1
end /* while */
a;=¢q
qg:=q+1
end /* for */

To put things in perspective, consider that a
single MD5 hash computation requires approxi-
mately 500 arithmetic operations. Thus, our
mapping (in both directions) costs less than one
MDS5 hash.

6. Cost analysis of a single one-time signature

6.1. All on-line case

In the preceding sections, we showed how to
sign an arbitrary b-bit message using p of n ran-

dom numbers. In this section, we will describe how
to choose n and p to minimize the total cost of a
OTS. Our initial assumption is that all of the
signing process is performed on-line, once the
message is presented.

The principal cost of generating a OTS (aside
from the cost of securely distributing the anchor
values H(R)) is the cost of computing H(R); this
costs n hashes. The principal cost of verifying a
OTS (aside from the cost of verifying the anchor
values) is the cost of computing H(S); this costs p
hashes. However, only a single sender generates a
OTS, while potentially many receivers verify it.
Thus, each hash involved in signature verification
incurs a greater cost than one involved in signature
generation.

In general, let each verification hash cost o
times as much as a generation hash. The total cost
of a single signature is then proportional to n + op;
this is the quantity that we shall try to minimize,
subject to the condition that C(n,p) > 2°.

We want to find » and p such that
C(n,p)=C(n+ o,p —1). As a first approximation,
we have, from the definition of the binomial co-
efficient

(nip>g;n1_9p' )

If we let o = p/n, we have

(-0 =, (©)

o= (1—0a)"" (7)

To find the optimal » and p, we find the p such that
C(lopl,p) > 2"

6.2. On-lineloff-line case

In [14], the authors introduce the new concept
of on-line/off-line digital signature schemes. In
these schemes the signing of a message is broken
into two phases. The first phase is off-line. Though
it requires a moderate amount of computation, it
presents the advantage that it can be performed at
leisure, before the message to be signed is even
known. The second phase is on-line and it starts
after the message becomes known. Since it utilizes
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the precomputation of the first phase, it is much
faster.

We observe that the signer can generate the
vector R = {Ry,...,R,}, and by applying the OWF
to each random number, he can generate the ha-
shes off-line. The on-line phase is just a mapping
and at the end of Section 5 we showed that it costs
less than one M D5 hash operation. So, in this case
we try to minimize the verification time. This is
also due to the fact that many times only a single
sender generates an OTS, but potentially many
receivers verify it.

It is improper to take the verification time as
only the time needed to make the mapping and
generate the hashes of the random numbers. One
of the disadvantages of OTS is its length; especially
if we have a low bandwidth channel, the time
needed to transmit the signature dominates the
time for verification and cannot be neglected. Also,
available bandwidth and computation power both
vary over a wide range. We may therefore optimize
n and p with respect to bandwidth and computa-
tion power.

Here, we will describe how to choose » and p to
minimize the total time 7 needed to verify one
OTS. Let’s take the hash length as b and random
number length as a. Assume a bandwidth of K
bits/s and L seconds as the time required to per-
form one hash operation. Then

T

ZGPan+(p+1)L+m. (8)
In the above formula, we ignore other delays such
as queuing delays. The extra L is for generating the
hash of the message, and m is the time to compute
the mapping. The total time needed to verify one
OTS is then proportional to n 4+ gp where

a+ LK
o= 9)

This optimization therefore reduces to the one
analyzed in the previous section.

7. Amortized cost of many signatures

Using the OTS only once is inefficient, since the
sender needs to sign the original hash image H(R)

Public key
Cryptography

B
A signs B

Fig. 3. Tree scheme for maintaining signature vectors.

using a conventional digital signature (e.g., DSS).
Using Merkle’s tree scheme [12] as illustrated in
Fig. 3, we can sign an arbitrarily large number of
messages with only one conventional signature.
However, the incremental cost of generating and
verifying an additional signature increases loga-
rithmically with the number of signatures.

In the tree scheme, one constructs a tree of
signature nodes. Each signature node has a vector
for signing each of its children as well as a single
message. The root node is signed by conventional
means—i.e., using a digital signature key.

One of the built-in features of Merkle’s OTS
tree construct is the ability to unambiguously or-
der signatures. This is a very useful service in many
application domains. For example, it is imperative
in a military environment to establish strict cau-
sality of commands (and signed orders in general).
Failure to do so can have disastrous consequences
since re-ordered messages can lead to devastating
mistakes on the battlefield. In the civilian realm,
signature ordering is very important in electronic
commerce, among other fields.

Consider a binary tree such that each node has
three vectors and suppose that we choose n and p
such that C(n,p) > 2°. We would like to compute
the cost, in hashes, of generating and verifying a
signature at any given depth d.

To generate the signature, one needs to do a
OTS of the message (requiring n hashes). Assum-
ing the signer can cache the tree, no further com-
putation is required.
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Verification requires one to perform p hashes to
verify the current node’s signature of the message,
and an additional p hashes to verify the parent
node’s signature of the current node. If the receiver
has cached the tree, no further computation is re-
quired; otherwise, an additional (d — 1)p hashes
are required.

In contrast to the single signature case, then,
each of a sequence of signatures costs n+ 2p
hashes if receivers cache the signature tree, or
n+ (d + 1)p hashes if they do not. How reason-
able is it to cache a signature tree? If we choose
SHA as our message digest, we need to sign 160
bits of message, for which we could choose
n =165 and p=82. Both signer and verifier
must cache, for each node, 3n 160-bit numbers
(the signer caches the random numbers R, the
verifier caches the anchor values H(R)); this
works out to 4950 bytes per node. This is easily
supported.

In fact, receivers who cache the tree need only
maintain the lowest layer of nodes, so that only
about half the nodes already traversed need be
kept at any time. They can prune additional in-
formation off the tree by removing the message
signature vectors after they are exhausted.

8. Constructing the optimal tree

In Section 4, we showed how to choose n and p
to minimize the total cost of an OTS. In this sec-
tion, we will describe how to choose the parame-
ters of a k-ary tree with a depth of d. Note in
particular that the tree structure does not need to
be binary. Also, we should stop somewhere in our
tree; at some point the cost of using our large tree
to verify an OTS is more than that of starting a
new tree in which we have signed the root node by
conventional means. In other words, we need to
optimize the value of d.

We will try to minimize the average verification
cost of one OTS. Suppose that the verifier only
caches the root node of the tree. This is a rea-
sonable assumption, especially when the signer
uses the tree to sign messages for different receiv-
ers. Suppose also that the cost of verifying a tra-

ditional signature is C times more than verifying
a OTS. In a k-ary tree with a depth of d, the
number of messages that can be signed is

d d
-1
N = -l -
2K =T
y=1
and the number of OTS required

d K+l — Dk? +1
W:Zyky’lzd (d+ 2) +1
y=1 (k_ 1)

In a single tree, the cost per message is

C+w  C+yy k!
N Zd -1

y=1

(10)

We try to find the smallest d such that the average
cost per message is smaller than it is for d + 1.
At optimal d,

C+ Yt C+ 3 k!

D v S
which is approximately equivalent to

CH+ (d+ k' + W=k(C+ W). (11)

If we put W into its place and make necessary
manipulations, our formula becomes

K =(k — 1)°C + 1.
Then, we can give the optimal tree depth d as

Llog[(k—1)’C+1]
N logk

d 1. (12)
In Fig. 4, we show the depth of a binary tree versus
average normalized verification cost per message.
One should choose the depth d where the average
normalized cost per message is minimal.

Secondly, we would like to introduce a way to
decide on the value of k. Suppose the signer
caches the tree and S be the storage requirement
for one random vector and its corresponding
hash values. Then the storage cost per message is
(k+ 1)S, which is independent of d. Suppose also
that the storage cost per message is at most M.
Then

M

k=" -1 (13)
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Fig. 4. Choosing the optimal depth for a binary tree.

So after estimating £ with this simple formula, we
can also find d by using the previous formula
above.

9. Implementation and future work

In practical implementations, OTS use closely
resembles that of public key signatures. For in-
stance, in OTS, the sender distributes a certifi-
cate, which contains a public value, signed by a
certification authority. The only difference is that
the public value here is a sequence of hash
function outputs (or a single output if these
components are hashed in a single hash value),
rather than a public key. Just as before, this
certificate can be distributed in advance of the
signed message, or it can accompany the signed
message. Finally, the signature represents a
transformation of a message digest of the overall
message; the only differences are in the details of
that transformation.

There is a clear analogy to traditional digital
signature algorithms, which is summarized by the
diagram below:

message digest <= message digest
encryption with private key

<= mapping to OTS random values
verification with public key

<= verification via OTS anchors

Currently, we have implemented an OTS library
which utilizes the suggested mapping and the tree
structure. We will investigate the effect of changing
the parameters to make it more efficient.
Subsequently, we will integrate our OTS library
into specific applications that require fast digital
signatures. One of the anticipated application do-
mains is as an integrity mechanism in Active Net-
works. One of the basic tenets of the Active
Networks concept is the use of so-called “smart
packets,” packets that carry the means for their
own handling in routers and other network entities.
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This paradigm immediately raises a number of se-
curity issues, data integrity and origin authentica-
tion being chief among them. For this reason, we
maintain that ultra-fast digital signatures are an
absolute must for Active Networks to be practical.

The results of our research will also be of
interest to an intrusion detection system. Authen-
ticating the source and contents of a response
request is fundamental to the survivability of
the systems at hand. At the same time, responses
must also be executed in a timely fashion and not
be allowed to queue indefinitely. We expect that
OTS will provide a way for components of intru-
sion detection systems to quickly and efficiently
establish the integrity of the messages they ex-
change.

10. Conclusion

We have provided a theoretical foundation for
evaluating the efficiency and compactness of one-
time digital signatures. This work reveals the ab-
solute minimum complexity of computing a digital
signature over a space of b-bit messages, based on
the weighted costs of signature generation and
verification. We have shown how this theoretical
minimum can be achieved by using a simple and
efficient mapping between messages and subsets of
random numbers. We have demonstrated how this
family of OTS schemes fits into an elegant proto-
col for amortizing the cost of OTSs over many
messages. Finally, we have provided a theoretical
foundation for evaluating the efficiency of the OTS
tree structure based on the weighted costs of tra-
ditional and OTSs.
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Abstract. One-time signatures (OTS) offer a viable aternative to public key-
based digita signatures. OTS security is based only on the strength of the
underlying one-way function and does not depend on the conjectured difficulty
of amathematical problem. OTS methods have been proposed in the past but no
solid foundation exists for judging their efficiency or optimality. This paper
develops a new methodology for evaluating OTS methods and presents optimal
OTS techniques for asingle OTS or a tree with many OTSs. These techniques
can be used in a see-saw mode to obtain desired tradeoff between various
parameters such as the cost of signature generation and its subsequent
verification and the cost of traditional signature verification and OTS
verification.

1 Introduction

Digital signatures are rapidly becoming ubiquitous in many spheres of computing.
Most current techniques for generating digital signatures are based on public key
cryptography, e.g., RSA or DSS [12, 3]. These, in turn, are based on complex
mathematical problems such as factoring or discrete logarithms. This solid
mathematical basisis both a blessing and a curse: the former because it lends itself to
simple and elegant design and the latter because there is no assurance that efficient
algorithms do not exist for solving the underlying mathematical problems.

One-time signatures (OTS) provide an attractive aternative to public key-based
signatures since---unlike signatures based on public key cryptography---OTS is based
on nothing more than a one-way function (OWF). Examples of conjectured OWFs
include DES [10], MD5 [11], and SHA [9]. There is strong (albeit folkloric) evidence
asto the existence of true OWFs. Furthermore, OTSs are claimed to be more efficient
since no complex arithmetic is typically involved in either OTS generation or
verification.
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The OTS concept has been known for almost two decades. It was initially developed
by Lamport [4] and enhanced by Merkle [8] and Winternitz [7]. For the sake of
brevity, we do not review the history of OTS research here; we defer instead to [6, 5]
for a comprehensive treatment of the subject.

One efficient OTS construction is due to Merkle [6]. (Other efficient constructions
can be found in [1] [2].) To summarize the cost of Merkle's OTS construction, the
signer generates n = (b+log b) random numbers and performs n OWF computations.
Each verifier performs, on the average, n/2 OWF computations which yields the
average total of 1.5 * (b+log b). If we were to sign a 128-bit message (e.g., an MD5
digest) an average of 202 OWF operations would be necessary.

Despite its relatively low cost and overall elegance, this is basicaly an ad hoc
construction. No argument for its optimality has been provided in Merkle's work.
Moreover, it remains unclear what optimality means in the context of an OTS system.
This open issue is precisely the topic of this paper. In order to obtain better
understanding of OTS optimality, we first address a more general issue of how to
maximize the message size (of a message to be signed) while minimizing the number
of random quantities to be used in OTS generation (and, hence, the number of OWF
operations). Our result leads us towards an optimal OTS construction where
efficiency corresponds to the smallest number of OWF operations used in both
generation and verification of an OTS. We then amend this definition of efficiency to
take into account situations where multiple verifications are necessary, e.g., with
multi-destination e-mail or, more generaly, secure multicast. This causes us to
consider adlightly different notion of optimality.

2 One-Time Signature Gener alization

The question we are trying to find an answer is how many distinct messages can be
signed when R contains n random numbers? For n = 1, the answer is one, and the
signature is the one random number. For n = 2, the answer is two: the signature can be
either ry or r,. If we were to map a message onto the signature subset {ry, ro}, that
choice would eliminate any other subset, allowing us only one distinct message. In
general, we observe that, for any n, we can obtain a valid message mapping by
drawing from all subsets containing p < n random numbers. Clearly, no one such
subset can be the subset of another, alowing us C(n,p) = nl/p!(n-p)! distinct
messages. In [13], it was shown that for any n, the domain of mapping M is greatest
when we draw from all subsets containing [h/20random numbers. This alows us to

sign any one of:
n
B, = 1
- ®

distinct messages, i.e., we are able to sign an arbitrary (Iog Bp)-bit message.
For example, if R contains four elements 1, 2, 3, and 4, then the largest valid message
setof Ris:
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V={{1,2,{1,3}, {1 4.{2 3}.{2 4,{3, 4}

which contains B, = 6 elements. By inverting this formula, using Stirling's
approximation and taking the base 2 log of both sides, we can see that to represent 2°
distinct values, n must satisfy

n-logy/[1n/2>b 2

For b = 128 (e.g., MD5), n must be at least 132, and each subset can be as small as
size 64, since C(132,64) > 2?8, For b=160 (e.g., SHA1), n must be at |east 165

(n = 164 is just barely insufficient), with subsets of size 75. Note that we can freely
increase n and decrease p, or similarly, decrease n and increase p, as long as C(n,p) >
2°. In Figure 1, we show the number of random numbers n versus the number of
hashes required for verification p, for two popular message (digest) sizes.
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Figure 1: Signature generaticn fverification hash profile.

3 Cost Analysisof a Single One-Time Signhature
3.1 All On-line Case

In the preceding sections, we showed how to sign an arbitrary b-bit message using p
of n random numbers. In this section, we will describe how to choose n and p to
minimize the total cost of a one-time signature. Our initial assumption isthat all of the
signing processis performed on-line, once the message is presented.

The principal cost of generating a one-time signature (aside from the cost of securely
distributing the anchor values H(R) is the cost of computing H(R); this costs n hashes.
The principa cost of verifying a one-time signature (aside from the cost of verifying
the anchor values) is the cost of computing H(S); this costs p hashes. However, only
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a single sender generates a one-time signature, while potentially many receivers
verify it. Thus, each hash involved in signature verification incurs a greater cost than
oneinvolved in signature generation.

In general, let each verification hash cost o times as much as a generation hash. The
total cost of a single signature is then proportional to n+ap; thisisthe quantity that we
shall try to minimize, subject to the condition that C(n,p) > 2°. We want to find n and
p such that C(n,p) = C(nto,p-1). As a first approximation, we have, from the
definition of the binomial coefficient

o -

If welet a = p/n, we have
a=@1-a)" )
To find the optimal n and p, we find the p such that C(LérpCjp) > 2°.

3.2 On-line/Off-line Case

In [2], the authors introduce the new concept of on-line/off-line digital signature
schemes. In these schemes the signing of a message is broken into two phases. The
first phase is off-line. Though it requires a moderate amount of computation, it
presents the advantage that it can be performed at leisure, before the message to be
signed is even known. The second phase is on-line and it starts after the message
becomes known. Since it utilizes the precomputation of the first phase, it is much
faster.

We observe that the signer can generate the vector R={R;,...,R,} of n random
numbers and by applying the OWF to each random number, he can generate the
hashes off-line. The on-line phase is just a mapping and at costs less than one MD5
hash operation. So, in this case we try to minimize the verification time. This is also
due to the fact that many times only a single sender generates an OTS, but potentially
many receivers verify it.

It is improper to take the verification time as only the time needed to make the
mapping and generate the hashes of the random numbers. One of the disadvantages of
OTSisits length; especidly if we have alow bandwidth channel, the time needed to
transmit the signature dominates the time for verification and cannot be neglected.
Also both available bandwidth and computation power vary in a wide range. We
therefore need to decide on the values of n and p with respect to bandwidth and
computation power.

Now, we will describe how to choose n and p to minimize the total time T needed to
verify one OTS. Let's take the hash length as b and random number length as a.

135



Assume a bandwidth of K bits/sec. And L seconds as the time required to perform one
hash operation. Then

T:ap;b”+(p+1)L+m 5

In the above formula, we ignore other delays such as queuing delays. One extra L is
for generating the hash of the message and m is the time for the mapping. The total
time needed to verify one OTS is then proportional to n+aop wherec = (a+ LK) / b.
Fortunately, this is the same quantity we have tried to minimize in the preceding
subsection. So in this case we can a so use the results we have obtained previously.

4 Amortized Cost of Many Signatures

Using the one-time signature only once is inefficient, since the sender needs to sign
the original hash image H(R) using a conventional digital signature (e.g., DSS).
Using a tree scheme, as in Merkle [6], we can sign an arbitrarily large number of
messages with only one conventional signature. However, the incremental cost of
generating and verifying an additional signature increases logarithmically with the
number of signatures.

In the tree scheme, one constructs a tree of signature nodes. Each signature node has
avector for signing each of its children as well as a single message. The root node is
signed by conventional means---i.e., using a digital signature key. In this treatment,
we consider only a binary tree, so that each node has three vectors. Suppose that we
choose n and p such that C(n,p)>2°. We would like to compute the cost, in hashes, of
generating and verifying a signature at any given depth d.

To generate the signature, one needs to do a one-time signature of the message
(requiring n hashes). Assuming the signer can cache the tree, no further computation
is required. Verification requires one to perform p hashes to verify the current node's
signature of the message, and additional p hashes to verify the parent node's signature
of the current node. If the receiver has cached the tree, no further computation is
required; otherwise, an additional (d-1)p hashes are required.

In contrast to the single signature case, then, each of a sequence of signatures costs
n+2p hashes if receivers cache the signature tree, or n+(d+1)p hashes if they do not.
How reasonable is it to cache a signature tree? If we choose SHA as our message
digest, we need to sign 160 bits of message, for which we could choose n=165 and
p=82. Both signer and verifier must cache, for each node, 3n 160-bit numbers (the
signer caches the random numbers R, then verifier caches the anchor values H(R));
this works out to 4950 bytes per node. Thisis easily supported.

In fact, receivers who cache the tree need only maintain the lowest layer of nodes, so
that only about half the nodes already traversed need be kept at any time. They can
prune additional information off the tree by removing the message signature vectors
after they are exhausted.
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5 Constructing the Optimal Tree

In Section 4, we showed how to choose n and p to minimize the total cost of an OTS.
Now in this section we will describe how to choose the parameters of a k-ary tree
with a depth of d. Note that the tree structure does not need to be binary; we can
increase k. On the other hand we should stop somewhere in our tree; that is at some
point the cost of using our large tree to verify an OTS is more than that of starting a
new tree in which we have signed the root node by conventional means. In other
words, we need to optimize the value of d.

We will try to minimize the average verification cost of one OTS. Suppose that the
verifier only caches the root node of the tree. This is a reasonable assumption,
especially when the signer uses the tree to sign messages for different receivers.
Suppose also that the cost of verifying a traditional signature is C times more than
verifying a OTS. In ak-ary tree with a depth of d, the number of messages that

can be signed and the number of OTS required are

d d
Zky‘l, Zka‘l
y= y=

respectively. In asingle tree, the cost per message is

d
C+ Z yky?
y:
d

kYt

y=1

Wetry to find the smallest d such that the average cost per message
issmaller thanitisfor d+1. If we use the equality of

y:

(k-1?
d+1 d
C+Y ywk¥?t Cc+§ yk¥?
d+1 -

d
Zky‘l Zky‘l
y= Y=

is approximately equal to
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C+(d+Dk? +W = k(C +W)

If we put W into its place and make necessary manipulations, our formula becomes

d= Iog|(k—1)ZC +1|_1 ©
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Figure 2: choosing the optimal depth for a binary tree

In Figure 2, we show the depth of a binary tree versus average normalized verification
cost per message. One should choose the depth d where the average normalized cost
per message is minimal .

6 Conclusion

We have provided a theoretical foundation for evaluating the efficiency and
compactness of one-time digital signatures. This work reveals the absolute minimum
complexity of computing a digital signature over a space of b-bit messages, based on
the weighted costs of signature generation and verification. We have shown how
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this theoretical minimum can be achieved, by using a simple and efficient mapping
between messages and subsets of random numbers. We have demonstrated how this
family of one-time signature schemes fits into an elegant protocol for amortizing the
cost of one-time signatures over many messages. Finally, we have provided a
theoretical foundation for evaluating the efficiency of the OTS tree structure based on
the weighted costs of traditional and one-time signatures.
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Abstract. Mediated RSA (mRSA) [1] is a simple and practical method
of splitting RSA private keys between the user and the Security Medi-
ator (SEM). Neither the user nor the SEM can cheat each other since a
signature or a decryption must involve both parties. mRSA allows fast
and fine-grained control (revocation) of users’ security priviliges.
Forward security is an important and desirable feature for signature
schemes. Despite some notable recent results, no forward-secure RSA
variant has been developed. In this paper (abstract), we show how weak
forward security can be efficiently obtained with mediated RSA. We con-
sider several methods, based on both multiplicative and additive mRSA
and discuss their respective merits.

1 Forward Security

Forward security is a timely and active research topic which has received some
attention in the recent research literature. The purpose of forward security is
to mitigate an important problem in ordinary public key signatures: the inabil-
ity to preserve the validity of past signatures following a compromise of one’s
private key. In other words, if a forward-secure signature scheme is employed,
an adversary who discovers the private key of a user is unable to forge user’s
signatures from earlier times (pre-dating the compromise).

The notion of forward security was introduced by Anderson [2]. Since then,
a number of schemes were proposed. Some are generic, i.e., applicable to any
signature scheme [3], while others target (and modify) a particular signature
scheme to achieve forward security [4, 5].

In this paper we concentrate on weak forward security in a mediated signature
setting. Informally, weak forward security means that the adversary is unable to
forge past signatures if she compromises only one (of the two) share-holders of
the private key. Specifically, we propose, discuss and analyze two simple schemes
built on top of mediated RSA (mRSA), a 2-out-of-2 threshold RSA scheme.

The paper is organized as follows: the next section provides an overview
of mRSA. Then, Section 3 describes the forward secure additive mRSA and
discusses its security and efficiency features. Section 4 presents another scheme
based on multiplicative mRSA. This scheme is more flexible but slightly less
efficient. The paper ends with the summary and some directions for future work.
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2 Mediated RSA

Mediated RSA (mRSA) involves a special entity, called a SEM (SEcurity Media-
tor) which is an on-line semi-trusted server. To sign or decrypt a message, Alice
must first obtain a message-specific token from the SEM. Without this token
Alice can not use her private key. To revoke Alice’s ability to sign or decrypt,
the administrator instructs the SEM to stop issuing tokens for Alice’s public key.
At that instant, Alice’s signature and/or decryption capabilities are revoked. For
scalability reasons, a single SEM serves many users. One of the mRSA’s advan-
tages is its transparency: SEM’s presence is invisible to other users: in signature
mode, mRSA yields standard RSA signatures, while in decryption mode, mRSA
accepts plain RSA-encrypted messages.

The main idea behind mRSA is the splitting of an RSA private key into two
parts as in threshold RSA [6]. One part is given to a user while the other is
given to a SEM. If the user and the SEM cooperate, they employ their respec-
tive half-keys in a way that is functionally equivalent to (and indistinguishable
from) standard RSA. The fact that the private key is not held in its entirety
by any one party is transparent to the outside, i.e., to the those who use the
corresponding public key. Also, knowledge of a half-key cannot be used to derive
the entire private key. Therefore, neither the user nor the SEM can decrypt or
sign a message without mutual consent.

We now provide an overview of mRSA functions. The variant described below
is the additive mRSA (+mRSA) as presented by Boneh, et al. in [1]. There is
also a multiplicative mRSA variant — denoted *mRSA — where the private key is
computed as the product of the two shares. (See Appendix for the description).
Muliplicative mRSA was first introduced in the Yaksha system [7] and later
discussed in [8].

Algorithm +mRSA.key (executed by CA)

Let k (even) be the security parameter

1. Generate random k/2-bit primes: p, q
2. n < pq

3. e & Z )

4. d + 1/e mod ¢(n)

5. dy & Zn— {0}

6. dsem < (d—dy,) mod ¢(n)

7. SK + d

8. PK <+ (m,e)

After computing the above values, the CA securely communicates dgep, to
the SEM and d,, — to the user. (A detailed description of this procedure can be
found in [1].) The user’s public key PK is released, as usual, in a public key
certificate.
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Protocol +mRSA.sign (executed by User and SEM)

1. USER: h «+ H(m)
where H() is a suitable hash function (e.g., SHA-based HMAC) and
[H()| < k.
2. USER: send h to SEM.
3. In parallel:
3.1 SEM:
(a) If USER revoked return (ERROR)
(b) PSsem 4 h%e™ modn
(c) send PSsem to USER
3.2 USER:
(a) PS, « h% modn
USER: b’ + (PSserm * PS,)¢ modn
USER: If b’ # h then return (ERROR)
S « (PSsem * PSy) mod n
USER: return (h,S)

N ook

The signature verification (+mRSA.ver) algorithm is not provided as it is iden-
tical to that in plain RSA.

3 Forward Secure +mRSA

The main idea in forward-secure additive mRSA (FS+mRSA) is for both SEM
and user to evolve their private key shares in parallel. The evolution is very
simple: each party logically multiplies its share by e. We say “logically” since
no actual muliplication is performed; instead, each party merely maintains a
counter (7) which is the index of the current time period. As in all other forward
secure schemes, there is a maximum number 7' past which the shares are not
evolved.
At any given time, the current private key is:

di=dyxé' and dg=dxe” T
The user’s and SEM’s respective key shares, at a given interval are:
diw = (doy) * €' where dg, = dy, * e~ T mod ¢(n)

and:
disem = (d07sem) €' where dO,sem = dsem * e~" mod ¢(n)

The i-th private key evolution can be thus rewritten as:
d; = (do,u) * el + (do,sem) * et=dyxet =dxe”T

In actuality, both user and SEM always maintain dy,,, and do, sem, which are
their respective initial shares. However, when they apply their respective shares
(to sign a message) they use the current evolution. The reason for not actually
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computing d; ,/sem is because neither the SEM nor the user knows ¢(n) and
thus cannot compute values of the form:

( (dO,u/sem) * ei) mod ¢(n)

Recall that p,q and, consequently, ¢(n) are known only to the CA.

The flavor of forward security offered by our approach is weak. Here 'weak’
means that, throughout the lifetime of the public key (T periods), the adversary
is allowed to compromise only one of the parties’ secrets, i.e., only d; ,, or d; sem
but not both.

Although the above may be viewed as a drawback, we claim that weak for-
ward security is appropriate for the mRSA setting, since the security of mRSA
is based on the non-compromise of both key shares. More specifically, the SEM is
an entity more physically secure and more trusted than a regular user. Hence, it
makes sense to consider what it takes for mRSA to be forward secure primarily
with respect to the user’s private key share.

3.1 FS+mRSA in detail

Like most forward-secure signature methods, FS+mRSA is composed of the fol-

lowing four algorithms: FS+mRSA.key, FS+mRSA.sign FS+mRSA.ver and FS+mRSA.update.
The purpose of the first three is obvious, while FS+mRSA.update is the secret

key share update algorithm executed by both user and SEM. We do not spec-

ify FS+mRSA.update since it is trivial: as mentioned above, it does not actually

evolve each party’s key share: it merely increments the interval counter.

Algorithm FS+mRSA.key (executed by CA)

Let (¢,T) be the length of the update interval and the max.
number of update intervals, respectively.

1-7. Identical to +mRSA key

8. PK «+ (t,T,n,e)

9. dow + du*e T mod ¢(n)

10. dosem 4 dsem * e~ mod ¢(n)
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Protocol FS+mRSA.sign (i,m)
i (0 < 4 < T) is the current interval index and m is the
input message

1. USER: h « H;(m)
where H;() is a suitable hash function (e.g., SHA-based HMACQC) in-
dexed with the current interval. (|H;()| < k)
2. USER: send m to SEM.
3. In parallel:
3.1. SEM:
(a) If USER revoked return (ERROR)
(b) b + H;(m)

(¢) PSsem « (h%0sem)¢ modn

(d) send PSsem to USER

3.2. USER: ,

(a) PS, + (h%)* modn

USER: I < (PSeem * PS,)*®" " modn
USER: If b’ # h then return (ERROR)

S + (PSsem * PS,) modn

USER: return (h,S)

N ok

We note that, in steps 3.1.a, 3.2.b and 4, two exponentiations are performed.

AMgorithm FS+mRSA.ver (i,S,m,e,n)

1(0< i< T) is the claimed interval index,

S is the purported signature on a message m, and (e,n) is the
public key of the signer

1. if (1 < 0) or ( > T) return (ERROR)
2. h « H;(m)
3.0 « S

If b # h then return (0)
5. return (1)

=

From the descriptions of FS+mRSA .sign and FS+mRSA.ver it is clear that
the present scheme is correct, i.e., signature verification succeeds iff a valid sig-
nature is provided:

i ) ) —-T, i —T_ i i—T
S « hd — hdi‘u+d1‘sem — hd"*e *e'+dgem *€ xe' _ hd*e

and

i i

—ped = p

Se*eT7 _ (hd*eFT )e*eT7

3.2 Efficiency

In [1], the efficiency of mRSA is shown to be roughly equivalent to unoptimized
RSA, i.e.,, RSA without using the Chinese Remainder Theorem (CRT). The
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efficiency of FS+mRSA is only slightly lower than that of mRSA. The only
difference in signing is the extra exponentiation with e! performed by both the
user and the SEM in parallel.

In general, an additional exponentiation with e’ is also needed for verifying
FS+mRSA signatures. However, we observe that, if the user’s public exponent
is small (e.g., 3), the curent public key e; = 3i! is likely to be smaller than the
modulus n for many values of i. For example, if e = 3 and k = 1024, |e;| < k
and e; < n for 0 < i < 592. In that case, e; can be stored as a single k — bit
number and only one exponentiation would be required to verify an FS+mRSA
signature.

The extra storage due to forward security in FS+mRSA is negligible. Since
key shares are only logically evolved, the only extra information maintained by
all signers and SEM-s (on top of what is already required by mRSA) is the index
of the current time interval.

3.3 Security Considerations

In all security aspects (other than forward security) the proposed scheme is
essentially equivalent to plain RSA as argued in [1]. Similarly, the forward se-
curity property of FS+mRSA is based on the difficulty of computing roots in a
composite-order group which is also the foundation of the RSA cryptosystem.
While this extended abstract does not, contain a proof of this claim, we provide
the following informal argument:

Assume that the adversary compromises the user at an interval j and,
as a result, learns dyp ,,.! In order to violate forward security, it suffices
for the adversary to generate a single new signature of the form (where
i < j and h = H(m) for some new message m):

S _ hdi — hdo*ei _ hdo,sem*ei-(-do‘u*ei — (hdo‘sem*ei % hdo‘u*ei)

Computing hdo’"*ei( mod n) is trivial. However, computing hdo‘sem*ei( mod
n) seems to require taking e-th (cube) roots (modn) since, in the cur-
rent interval j (j > ¢), the SEM is using as its key share (do,sem * €’) and

i
only “produces” values of the form: A%:sem*¢’ mod n.

All forward-secure signature schemes proposed thus far rely on the secure
deletion of old secret keys. This is not always a realistic assumption, especially
when secure (tamper-resistant) hardware is not readily avaialable. In this aspect,
FS+mRSA offers an advantage since the user’s secret key share is not actually
evolved and no deletion of prior secrets is assumed. While the compromise of
the user’s current key share yields all user’s key shares for all prior intervals,
no past-dated signatures can be produced since the SEM’s key share evolves
separately. We also note that this property is symmetric: if a SEM’s key share

! This is possible because dj . is never actually computed, but composed, when needed,
as doy * €.

145



is ever compromised, forward security is preserved as long as the user’s share
remains secure.

There are, however, two types of attacks unique to FS+mRSA. We refer
to the first type as a future-dating attack. In it, an adversary obtains a valid
signature from the user (m,S) under the current public key (e,n,7). He then
takes advantage of the private key structure to construct a valid signature (S’)
on the same message m dated in some future interval j (i < j < T). This can
be easily done by computing:

S = Sej_i — (h(du+dsem)*ei_T)ej_i — hd*ej_T
We note that this attack does not compromise the forward security property of
the signature scheme. However, it does pose a problem for FS+mRSA. Fortu-
nately, there is an easy fix. It involves hashing the index of the current time
interval together with the message. This is already specified in the initial step
in protocol FS+mRSA.sign. (In other words, instead of h = H(m) we can com-
pute h = H(m,1), or, better yet, h = HMAC;(m). This essentially rules out the
future-dating attack.)

The second attack type is an oracle attack. In it, an adversary, masquarading
as the user, sends signature requests to the SEM during the time interval 1.
This is easy to do since the communication channel between the user and the
SEM is neither private nor authentic. The adversary collects a number of “half-
signatures” of the form (m, PSq.,,) where:

Psi,se'm — hdsem*ei_T

Suppose that at a later interval j (i < j < T), the adversary actually com-
promises the user’s secret d; .. Although the adversary can not compute “new”
signatures from prior time intervals, he can use the previously acquired half-
signatures to forge signatures from period i:

i—T

§' = (PSiem) ™™™ = (oo

)dsem*ei_T — hd*ei_T

One simple way of coping with the oracle attack is to require the user-SEM
communication channel to be authentic. This is not much of a burden in practice
due to widely-deployed and available tools such as IPSec [9] and SSL [10]. An
alternative is to require mRSA-based authentication of the signature request
messages flowing from the user to the SEM. This can be accomplished as follows.
When sending a signature request to the SEM, the user computes, in addition:
h = H(h) where H() # H() is a suitable (cryptographically strong) hash
function such that |H()| < k. He then computes:

PS, « h%»modn

The user sends PS, along with h in the signature request to the SEM. The
SEM, before computing its half-signature (PSsem ), verifies P.S,, by computing;:

h' = H(h) and comparing:

B and (PS,"*™)**¢" modn
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Since these two values match only if the user originated the signature request,
oracle attacks can be thereby avoided.

4 Forward Secure *mRSA

We now construct another forward-secure scheme based on the multiplicative
mRSA variant. Only the key generation and signing algorithms are shown; the
verification algorithm is identical to that in FS+mRSA.

Algorithm FS*mRSA.key

1-7. Identical to *mRSA key (see Appendix)
8. PK «+ (t,T,n,e)
9. dO,sem «— dsem * e_T mod qS(n)

The main difference with respect to F'S + mRSA is the unilateral update
feature. In the present scheme, only the SEM’s share is evolved whereas the user’s
share remains the same throughout the lifetime of the key. This is a desireable
feature since it saves the user one exponentiation over FS+mRSA. However, this
does not significantly influence the overall performance since, unlike FS+mRSA,
the two parties cannot compute their half-signatures in parallel.

Protocol FS*mRSA.sign

USER: h + H;(m)

USER: send m to SEM

SEM: If USER revoked return (ERROR)
SEM: h « Hi(m)

SEM: PSsem < h%=em modn

SEM: send PSsem to USER.

USER: ' « (PS% )**¢" " modn
USER: If b’ # h then return (ERROR)
S « (PS% )Ymodn

USER: return (h,S)

© O RNO W
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The correctness of FS*mRSA is evident from the verification procedure:

T—1 T—1 T—1

(S)e*e — ((PSsem)d")e*e — ((hdi‘sem)du)e*e —

((hdsem*ei_T — (hd*ei_T)e*e —h

Just like FS+mRSA, this scheme is vulnerable to both future-dating and
oracle attacks. Fortunately, the exact countermeasures described in Section 3.3
are equally applicable here.

Another trivial variation of this scheme entails only the user (but not the
SEM) evolving its key share. This is a less attractive option since it is much more
likely that the user, rather than the SEM, succumbs to eventual compromise.
Finally, it is also possible to have both parties evolving the key (just as in
FS+mRSA). The main difference here would be that signature verification would
require an extra exponentiation with e’ rather than e’.

)du )e*eT_i
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5 A Final Observation

A crucial (but purposely ignored above) detail in the construction of FS+mRSA
and FS*mRSA is the use of the current period index ¢ in the hashing of the
input message. The intended purpose of the index is as a hedge against possible
attacks against the key evolution scheme. However, a closer look indicates that
the inclusion of the index in the hash is in and of itself sufficient to provide the
same weak forward security that we hope to attain with key evolution. In this
case, key evolution as described above can be dropped completely to be replaced
by the simple hashing of the period index. (This would also result in a much
more efficient scheme.)

6 Summary

We described two methods of obtaining efficient (yet weak) forward security
with mediated RSA. These methods work with both multiplicative and additive
mRSA variants. The degree of forward security is weak since we assume that
only the user or the SEM (but not both) are compromised by the adversary.
However, this assumption is in line with the mRSA notion of security which is
based on the inability to compromise both parties.

Since, aside from signatures, mRSA can be used for encryption, the natural
issue to consider is whether FS+mRSA and FS*mRSA schemes are useful for
forward-secure encryption.

7 Acknowledgements

Many thanks to Giuseppe Ateniese for pointing out an attack on the previous
version of FS+mRSA as well to anonymous referees for their comments.

References

1. D. Boneh, X. Ding, G. Tsudik, and B. Wong, “Instanteneous revocation of security
capabilities,” in Proceeding of USENIX Security Symposium 2001, Aug. 2001.

2. R. Anderson, “Invited lecture at the acm conference on computer and communi-
cation security (ccs’97),” 1997.

3. H. Krawczyk, “Simple forward-secure signatures from any signature scheme,” in
ACM Conference on Computer and Communication Security (CCS’00), 2000.

4. G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing and veri-
fying,” in CRYPTO’01, 2001.

5. M. Bellare and S. Miner, “A forward-secure digital signature scheme,” in
CRYPTO’99, 1999.

6. P. Gemmel, “An introduction to threshold cryptography,” RSA CryptoBytes, vol. 2,
no. 7, 1997.

7. R. Ganesan, “Augmenting kerberos with pubic-key cryptography,” in Symposium
on Network and Distributed Systems Security (T. Mayfield, ed.), (San Diego, Cal-
ifornia), Internet Society, Feb. 1995.

148



8. P. MacKenzie and M. K. Reiter, “Networked cryptographic devices resilient to
capture,” in Proceedings of the 2001 IEEE Symposium on Security and Privacy,
pp- 12-25, May 2001.

9. S. Kent and R. Atkinson, “RFC 2401: Security architecture for the internet proto-
col,” Nov 1998.

10. “The openssl project web page,” hitp://www.openssl.org.

A Multiplicative mRSA — *mRSA

The *mRSA variant is largely similar to its additive counterpart. The only sub-
stantive difference has to do with parallelizing private key operations by the user
and the SEM. In +mRSA, both parties can perform exponentiations with their
respective private key shares in parallel. In contrast, *mRSA prescribes serial
operation.

Algorithm *mRSA.key (executed by CA)

Let k (even) be the security parameter

Generate random k/2-bit primes: p,q
n < pq

e & Zyn

d < 1/e mod ¢(n)

du & Zj,

dsem — ( /du
SK « (d,n)

PK + (n,e)

) mod ¢(n)

P NSO W

As in additive mRSA, CA securely communicates dgey, to the SEM and d,,
— to the user. The user’s public key PK is released as part of a public key
certificate.

Protocol *mRSA.sign (executed by User and SEM)

USER: h + H(m)

USER: send h to SEM

SEM: If USER revoked return (ERROR)
SEM: PSsem < h%*™ modn

SEM: send PSsem to USER

USER: I/ + (PS%.,)® modn

USER: If b’ # h then return (ERROR)
USER: S « (PS%,)modn

USER: return (h,S)

© 00N OE W
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Short Signatures from the Weil Pairing
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Abstract

We introduce a short signature scheme based on the Computational Diffie-Hellman assump-
tion on certain elliptic and hyper-elliptic curves. For standard security parameters, the signature
length is about half that of a DSA signature with a similar level of security. Our short signature
scheme is designed for systems where signatures are typed in by a human or are sent over a
low-bandwidth channel. We survey a number of properties of our signature scheme such as
signature aggregation and batch verification.

1 Introduction

Short digital signatures are needed in environments with strong bandwidth constraints. For ex-
ample, product registration systems often ask users to key in a signature provided on a CD label.
When a human is asked to type in a digital signature, the shortest possible signature is needed.
Similarly, due to space constraints, short signatures are needed when one prints a bar-coded digital
signature on a postage stamp [47, 42]. As a third example, consider legacy protocols that allocate
a fixed short field for non-repudiation [1, 29]. One would like to use the most secure signature that
fits in the alloted field length.

The two most frequently used signatures schemes, RSA and DSA, produce relatively long sig-
natures compared to the security they provide. For example, when one uses a 1024-bit modulus,
RSA signatures are 1024 bits long. Similarly, when one uses a 1024-bit modulus, standard DSA
signatures are 320 bits long. Elliptic curve variants of DSA, such as ECDSA, are also 320 bits
long [2]. A 320-bit signature is too long to be keyed in by a human.

We propose a signature scheme whose length is approximately 170 bits and which provides a
level of security similar to that of 320-bit DSA signatures. Our signature scheme is secure against
existential forgery under a chosen-message attack (in the random oracle model), assuming the
Computational Diffie-Hellman problem (CDH) is hard on certain elliptic curves over a finite field.
Generating a signature is a simple multiplication on the curve. Verifying the signature is done
using a bilinear pairing on the curve. Our signature scheme inherently uses properties of curves.
Consequently, there is no equivalent of our scheme in Fy, the multiplicative group of a finite field.

Constructing short signatures is an old problem. Several proposals show how to shorten DSA
while preserving the same level of security. Naccache and Stern [42] propose a variant of DSA
where the signature length is approximately 240 bits. Mironov [40] suggests a DSA variant with
a similar length and gives a concrete security analysis of the construction in the random oracle
model. Another technique proposed for reducing DSA signature length is signatures with message
recovery [43, 47]. In such systems one encodes a part of the message into the signature thus
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shortening the total length of the message-signature pair. For long messages, one can then achieve
a DSA signature overhead of 160 bits. However, for very short messages (e.g., 64 bits) the total
length remains 320 bits. Using our signature scheme, the signature length is always on the order
of 160 bits, however short the message. We also note that Patarin et al. [45, 18] construct short
signatures whose security depends on the Hidden Field Equation problem.

Our signature scheme uses groups where the CDH problem is hard, but the Decision Diffie-
Hellman problem (DDH) is easy. The first example of such groups was given in [31] and was used
in [30, 10]. We call such groups Gap Diffie-Hellman groups, or GDH groups for short. We show how
to construct a signature scheme from GDH groups, prove security of the scheme, and show how to
build GDH groups that lead to short signatures. The signature scheme resembles the undeniable
signature scheme of Chaum and Pedersen [14]. Our signature scheme has several useful properties,
described in Section 5. For example, signatures generated by different people on different messages
can be aggregated into a single signature [11]. The signature also supports standard extensions
such as threshold signatures and blind signatures [9].

Notation. We use E/F, to denote an elliptic curve with coefficients in F,. For r» > 1, we use
E(F,) to denote the group of points on E in F,r. We use |E(Fyr)| to denote the number of points
in E(Fy).

2 Gap Diffie-Hellman groups and bilinear maps

Before presenting the signature scheme, we first review a few concepts related to bilinear maps and
Gap Diffie-Hellman groups. We use the following notation:

e (G1 and Gy are two (multiplicative) cyclic groups of prime order p;
e ¢ is a generator of G and g¢s is a generator of Go;

e ¢ is an isomorphism from Gs to Gy, with 1(g2) = ¢g1; and

e ¢ is a bilinear map e : G1 x Gy — Grp.

The group Gr is described below. One can set G; = G2, but we allow for the more general case
where G1 # G2 so that we can take advantage of certain families of non-supersingular elliptic curves
as described in Section 4.3.

The proofs of security require an efficiently computable isomorphism 1 : Gy — G1. When
G1 = G2 and g1 = g2 one could take ¥ to be the identity map. When G # G5 we will need to
describe explicitly an efficiently computable isomorphism ¢ : Go — G1. The map ¥ is essential for
security. To illustrate this, we give in the next section an example of a bilinear map that engenders
an insecure signature scheme precisely because ¢ does not exist.

With this setup we obtain natural generalizations of the CDH and DDH problems:

Computational co-Diffie-Hellman (co-CDH) on (G1,G2): Given go,95 € G2 and h € G; as
input, compute h* € Gy.

Decision co-Diffie-Hellman (co-DDH) on (G1,G2): Given g¢2,¢5 € G2 and h,ht € Gy as in-
put, output yes if a = b and no otherwise. When the answer is yes we say that (g2, g9, h, h%)
is a co-Diffie-Hellman tuple.
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When GG; = G5 these problems reduce to standard CDH and DDH.

Next we a define a co-GDH group pair to be a pair of groups (G1,G2) on which co-DDH is
easy but co-CDH is hard. We define the success probability of an algorithm A in solving the
Computational co-Diffie-Hellman problem on (G, G2) as

Succ co-CDH4 < pr [A(gg,gg, hy=ht:a&z, nd Gl]

The probability is over the uniform random choice of a from Z, and h from G, and over the coin
tosses of A. We say that an algorithm A (¢, €)-breaks Computational co-Diffie-Hellman on (G1, G2)
if A runs in time at most ¢, and Succ co-CDH 4 is at least e. Here time is measured according to
some fixed computational model —say, state transitions in a probabilistic (oracle) Turing machine.

Definition 2.1. Two groups (G1,G2) are a (7,t,¢)-Gap co-Diffie-Hellman group pair (co-GDH
group pair) if they satisfy the following properties:

e The group operation on both GG; and Go and the map 1 from Go to G1 can be computed in
time at most 7.

e The Decision co-Diffie-Hellman problem on (G1,G2) can be solved in time at most 7.

e No algorithm (¢, €)-breaks Computational co-Diffie-Hellman on (G, G2).

When (G1,G1) is a (7,t,€) co-GDH group pair we say G; is a (7,t, €)-Gap-Diffie-Hellman group
(GDH group).

Informally, we are only interested in co-GDH group pairs where 7 is sufficiently small so that the
co-DDH problem has an efficient solution, but ¢/e is sufficiently large so that the co-CDH problem
is intractable. Currently, the only examples of such Gap Diffie-Hellman groups arise from bilinear
maps [31]. We briefly define bilinear maps and show how they give GDH groups. It is possible that
other constructions for useful Gap Diffie-Hellman groups exist.

Let Gy and G2 be two groups as above, with an additional group G such that |G1| = |G| =
|Gr|. A bilinear map is a map e : G; X Go — Gp with the following properties:

e Bilinear: for all u € G1,v € G and a,b € Z, e(u®,v*) = e(u,v).
e Non-degenerate: e(g1,92) # 1.

Definition 2.2. Two order-p groups (G1,G2) are a (7,t, €)-bilinear group pair if they satisfy the
following properties:

e The group operation on both G; and G2 and the map ¢ from G2 to G; can be computed in
time at most 7.

e A group Gr of order p and a bilinear map e : G; X G2 — G exist, and e is computable in
time at most 7.

e No algorithm (¢, €)-breaks Computational co-Diffie-Hellman on (G, G2).

Joux and Nguyen [31] showed that an efficiently-computable bilinear map e provides an algo-
rithm for solving the Decision co-Diffie-Hellman problem as follows: For a tuple (g2, g5, h, hP) where
h € G1 we have

a=bmodp <= e(h,gs) =e(hb g) .

Consequently, if two groups (G1, G2) are a (7,t, €)-bilinear group pair, then they are also a (27, ¢, €)-
co-GDH group pair. The converse is probably not true.

152


cameras
Text Box
152


3 Signature schemes based on Gap Diffie-Hellman groups

We present a signature scheme that works on any Gap co-Diffie-Hellman group pair (G1,G2). We
prove security of the scheme and, in the next section, show how it leads to short signatures. The
scheme resembles the undeniable signature scheme proposed by Chaum and Pedersen [14]. Okamoto
and Pointcheval [44] briefly note that gap problems can give rise to signature schemes. However,
most gap problems will not lead to short signatures.

Let (G1,G2) be (t,€)-Gap co-Diffie-Hellman group pair where |G1| = |G2| = p. A signature o
is an element of G;. The signature scheme comprises three algorithms, KeyGen, Sign, and Verify.
It makes use of a full-domain hash function H : {0,1}* — G;. The security analysis views H as a
random oracle [7]. In Section 3.2 we weaken the requirement on the hash function H.

Key generation. Pick random x & Zy, and compute v < g5. The public key is v € G2. The
private key is x.

Signing. Given a private key = € Z,,, and a message M € {0,1}*, compute h — H(M) € G; and
o <« h*. The signature is o € G.

Verification. Given a public key v € G3, a message M € {0, 1}*, and a signature o € G1, compute
h «— H(M) € G1 and verify that (g2,v, h, o) is a valid co-Diffie-Hellman tuple. If so, output
valid; if not, output invalid.

A signature is a single element of G;. To construct short signatures, therefore, we need co-
GDH group pairs where elements in GG1 have a short representation. We construct such groups in
Section 4.

3.1 Security

We prove the security of the signature scheme against existential forgery under adaptive chosen-
message attacks in the random oracle model. Existential unforgeability under a chosen message
attack [28] for a signature scheme (KeyGen, Sign, and Verify) is defined using the following game
between a challenger and an adversary A:

Setup. The challenger runs algorithm KeyGen to obtain a public key PK and private key SK.
The adversary A is given PK.

Queries. Proceeding adaptively, A requests signatures with PK on at most ¢g messages of
his choice Mj, ..., My, € {0,1}*. The challenger responds to each query with a signature
o; = Sign(SK, M;).

Output. Eventually, A outputs a pair (M,o) and wins the game if (1) M is not any of
My,..., My, and (2) Verify(PK, M,o) = valid.

We define Adv Sig 4 to be the probability that .4 wins in the above game, taken over the coin tosses
of KeyGen and of A.

Definition 3.1. A forger A (¢,qs, qu, €)-breaks a signature scheme if A runs in time at most ¢, A
makes at most g5 signature queries and at most g, queries to the hash function, and Adv Sig 4 is
at least e. A signature scheme is (¢, qs, qu, €)-existentially unforgeable under an adaptive chosen-
message attack if no forger (¢, qs, qu, €)-breaks it.
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The following theorem shows that the signature scheme is secure. Security of the scheme follows
from the hardness of co-CDH on (Gi,G2). When G7 = Gy security is based on the standard
Computational Diffie-Hellman assumption in G;.

Theorem 3.2. Let (G1,G2) be a (1,t',€')-co-GDH group pair of order p. Then the signature
scheme on (G1,G2) is (t,qs,qu,€)-secure against existential forgery under an adaptive chosen-
message attack (in the random oracle model), for all t and € satisfying

e>elgs+1)-¢ and t <t —ce (g + 2qs) -
Here cg, is a constant that depends on G1, and e is the base of the natural logarithm.

Proof. Suppose A is a forger algorithm that (¢, qs, gy, €)-breaks the signature scheme. We show
how to construct a t-time algorithm B that solves co-CDH on (G1,G2) with probability at least
¢/. This will contradict the fact that (G1,G2) is a (t/, €')-co-GDH group pair.

Let g2 be a generator of Gy. Algorithm B is given gs,u € G2 and h € G, where u = g9. Its
goal is to output h* € Gy. Algorithm B simulates the challenger and interacts with forger A as
follows.

Setup. Algorithm B starts by giving A the generator g2 and the public key u - g5 € G2, where r
is random in Z,,.

H-queries. At any time algorithm A can query the random oracle H. To respond to these queries
algorithm B maintains a list of tuples (M, w;, bj, c;) as explained below. We refer to this list
as the H-list. The list is initially empty. When A queries the oracle H at a point M; € {0, 1}*,
algorithm B responds as follows:

1. If the query M; already appears on the H-list in a tuple (M;, w;, b;, ¢;) then algorithm B
responds with H(M;) = w; € G;.

2. Otherwise, B generates a random coin ¢; € {0,1} so that Pr[¢c; = 0] = 1/(gs + 1).
3. Algorithm B picks a random b; € Z,, and computes w; « k'~ - (g2)b € Gj.

4. Algorithm B adds the tuple (M;, w;,b;,c;) to the H-list and responds to A by setting

Note that either way w; is uniform in G; and is independent of A’s current view as required.

Signature queries. Let M; be a signature query issued by 4. Algorithm B responds to this query
as follows:

1. Algorithm B runs the above algorithm for responding to H-queries to obtain a w; € Gy
such that H(M;) = w;. Let (M;, w;,b;, c;) be the corresponding tuple on the H-list. If
¢; = 0 then B reports failure and terminates.

2. Otherwise, we know ¢; = 1 and hence w; = ¥(g2)% € G1. Define o; = 1(u)% - ¢(g2)™ €
G1. Observe that o; = w?” and therefore o; is a valid signature on M; under the public
key u - g5 = g57". Algorithm B gives o; to algorithm A.

Output. Eventually algorithm A produces a message-signature pair (My, o) such that no signa-
ture query was issued for My. If there is no tuple on the H-list containing M then B issues a
query itself for H(Mjy) to ensure that such a tuple exists. We assume o is a valid signature on
M under the given public key; if it is not, B reports failure and terminates. Next, algorithm B
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finds the tuple (M, w,b,c) on the H-list. If ¢ = 1 then B reports failure and terminates.
Otherwise, ¢ = 0 and therefore H(M;) = w = h-1(g2)?. Hence, 0 = h*" -1)(g2)*@*7). Then
B outputs the required h® as h® « o /(A" - ¥ (u)’ - 1 (g2)™).

This completes the description of algorithm B. It remains to show that B solves the given instance
of the co-CDH problem on (G1,G3) with probability at least €. To do so, we analyze the three
events needed for B to succeed:

&1: B does not abort as a result of any of A’s signature queries.
&t A generates a valid message-signature forgery (My,oy).

&3: Event & occurs and ¢ = 0 for the tuple containing My on the H-list.

B succeeds if all of these events happen. The probability Pr[&; A &3] is:
Pl"[gl A 53] = Pl“[gl] . Pl"[gz ’ 51} . Pr[é’g | EL N 52] . (1)
The following claims give a lower bound for each of these terms.

Claim 1. The probability that algorithm B does not abort as a result of A’s signature queries is at
least 1/e. Hence, Pr[&] > 1/e.

Proof. Without loss of generality we assume that A does not ask for the signature of the same
message twice. We prove by induction that after A makes i signature queries the probability
that B does not abort is at least (1 — 1/(gs + 1))?. The claim is trivially true for i = 0. Let M;
be A’s i’th signature query and let (M;, w;, b;, ¢;) be the corresponding tuple on the H-list. Then
prior to issuing the query, the bit ¢; is independent of A’s view —the only value that could be given
to A that depends on ¢; is H(M;), but the distribution on H(M;) is the same whether ¢; = 0 or
¢; = 1. Therefore, the probability that this query causes B to abort is at most 1/(¢s + 1). Using
the inductive hypothesis and the independence of ¢;, the probability that B does not abort after
this query is at least (1 —1/(gs + 1))%. This proves the inductive claim. Since A makes at most gs
signature queries the probability that B does not abort as a result of all the signature queries is at
least (1 —1/(gs+ 1)) > 1/e. O

Claim 2. If algorithm B does not abort as a result of A’s signature queries then algorithm A’s
view is identical to its view in the real attack. Hence, Pr[€ | £1] > €.

Proof. The public key given to A is from the same distribution as a public key produced by
algorithm KeyGen. Responses to H-queries are as in the real attack since each response is uniformly
and independently distributed in G1. All responses to signature queries are valid. Therefore, A
will produce a valid message-signature pair with probability at least e. Hence, Pr[& | &1] > €. O

Claim 3. The probability that algorithm B does not abort after A outputs a valid forgery is at least
1/(gs +1). Hence, Pr[€s | E1 A E] =1/(gs + 1).

Proof. Given that events £ and & happened, algorithm B will abort only if A generates a forgery
(My,0y) for which the tuple (My,w,b,c) on the H-list has ¢ = 1. At the time A generates its
output it knows the value of ¢; for those M; for which it issued a signature query. All the remaining
¢;’s are independent of A’s view. Indeed, if A did not issue a signature query for M; then the
only value given to A that depends on ¢; is H(M;), but the distribution on H(M;) is the same
whether ¢; = 0 or ¢; = 1. Since A could not have issued a signature query for My we know that ¢
is independent of A’s current view and therefore Prfc = 0| & A &) =1/(¢gs + 1) as required. [
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Using the bounds from the claims above in equation (1) shows that B produces the correct
answer with probability at least €/e(qs + 1) > € as required. Algorithm B’s running time is the
same as A’s running time plus the time it takes to respond to (¢y +¢s) hash queries and ¢s signature
queries. Each query requires an exponentiation in GG1 which we assume takes time cs,. Hence, the
total running time is at most t + cq, (¢ + 2¢s) < t' as required. This completes the proof of
Theorem 3.2. ]

The analysis used in the proof of Theorem 3.2 resembles Coron’s analysis of the Full Domain
Hash (FDH) signature scheme [16]. We note that the security analysis can be made tight using
Probabilistic Full Domain Hash (PFDH) [17], at the cost of increasing signature length. The
security reduction in Theorem 3.2 can also be made tight without increasing signature length via
the technique of Katz and Wang [32].

Our signature scheme requires an algorithm for deciding DDH. In groups where a DDH-deciding
algorithm is not available, Goh and Jarecki [27] show that it is still possible to construct a signature
scheme based on CDH, at the cost of substantially greater signature length.

The necessity of 1) : Go — G1. Recall that the proof of security relied on the existence of an
efficiently computable isomorphism v : Go — G;. To show the necessity of ¥ we give an example of
a bilinear map e : G; X G2 — G for which the co-CDH problem is believed to be hard on (G1,G2)
and yet the resulting signature scheme is insecure.

Let ¢ be a prime and let Gg be a subgroup of Z; of prime order p with generator g. Let G be
the group G = Z,, with addition. Define the map e : G; x Go — G as e(z,y) = y*. The map is
clearly bilinear since e(az,y’) = e(z,y)®. The co-CDH problem on (G, Gs) is as follows: Given
g,9% € G2 and ¢ € G1 compute ax € G;. The problem is believed to be hard since an algorithm
for computing co-CDH on (G, G2) gives an algorithm for computing discrete log in G2. Hence,
(G1,G9) satisfies all the conditions of Theorem 3.2 except that there is no known computable
isomorphism ¥ : Go — G7. It is is easy to see that the resulting signature scheme from this bilinear
map is insecure. Given one message-signature pair, it is easy to recover the private key.

We comment that one can avoid using v at the cost of making a stronger complexity assumption.
Without v the necessary assumption for proving security is that no polynomial time algorithm can
compute h® € G given ¢o,95 € G and g1, g{,h € G;. Since v naturally exists in all the group
pairs (G1, G2) we are considering, there is no reason to rely on this stronger complexity assumption.

3.2 Hashing onto elliptic curves

The signature scheme needs a hash function H : {0,1}* — G;. In the next section we use elliptic
curves to construct co-GDH group pairs and therefore we need a hash function H : {0,1}* — G
where (1 is a subgroup of an elliptic curve. Since it is difficult to build hash functions that hash
directly onto a subgroup of an elliptic curve we slightly relax the hashing requirement.

Let F, be a field of characteristic greater than 2. Let E/F, be an elliptic curve defined by
y?> = f(z) and let E(F,) have order m. Let P € E(F,) be a point of prime order p, where p?
does not divide m. We wish to hash onto the subgroup G; = (P). Suppose we are given a
hash function H' : {0,1}* — F, x {0,1}. Such hash functions H' can be built from standard
cryptographic hash functions. The security analysis will view H' as a random oracle. We use the
following deterministic algorithm called MapToGroup to hash messages in {0,1}* onto G;. Fix a
small parameter I = [log,logy(1/6)], where 0 is some desired bound on the failure probability.

MapToGroupy: The algorithm defines H : {0,1}* — G; as follows:
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1. Given M € {0,1}*, set i < 0;
2. Set (x,b) « H'(i || M) € Fy x {0,1}, where i is represented as an I-bit string;
3. If f(z) is a quadratic residue in F; then do:

3a. Let yo,y1 € Fy be the two square roots of f(z). We use b € {0, 1} to choose between these
roots. Choose some full ordering of F, and ensure that y; is greater than yo according
to this ordering (swapping yo and y; if necessary). Set Py € E(F,) to be the point
Py = (x,up).

3b. Compute Py; = (m/p)Pys. Then Py is in Gy. If Py # O, output Map ToGroupy (M) =
Py and stop; otherwise, continue with Step 4.

4. Otherwise, increment 7, and go to Step 2; if i reaches 2/, report failure.

The failure probability can be made arbitrarily small by picking an appropriately large I. For
each 4, the probability that H'(i || M) leads to a point on G; is approximately 1/2 (where the
probability is over the choice of the random oracle H'). Hence, the expected number of calls to

H'’ is approximately 2, and the probability that a given message M will be found unhashable is
122" < 4.

Lemma 3.3. Let E/F, be an elliptic curve and let E(F,;) have order m. Let Gy be a subgroup
of E(Fq) of order p such that p? does not divide m. Suppose the co-GDH signature scheme is
(t,qs,qu,€)-secure in the groups (G1,G2) when a random hash function H : {0,1}* — G is used.
Then it is (t — QICGIqH, du — qs — 1, qs, €)-secure when the hash function H is computed with
MapToGroupy: and H' is a random oracle hash function H' : {0,1}* — Fq x {0,1}. Here cs, is a
constant that depends on G1.

Proof. Suppose a forger algorithm F’ (¢, ¢y, qs, €)-breaks the co-GDH signature scheme on (G1, G2)
when given access to a random oracle H' : {0,1}* — F, x {0,1} and MapToGroupy,. We build an
algorithm F that (¢ + 21001 (qu +qgs +1),qu + gs + 1,qs, €)-breaks the co-GDH signature scheme
when given access to a full-domain random oracle hash H : {0,1}* — Gj.

Setup. To respond to queries made by F’, F uses an array s;;, whose entries are elements of
F, x {0,1}. The array has gy rows and 2! columns. On initialization, F fills s;; with
uniformly-selected elements of Fy x {0, 1}.

Algorithm F has access to a random oracle H : {0,1}* — G;. It will use this to simulate the
random oracle H' : {0,1}* — F, x {0,1} that F’ uses. Algorithm F is also given a public
key v, and a signing oracle for that key. Its goal is to output a forgery on some message
under v.

Algorithm F runs F’ and responds to its oracle queries as follows.
H'-queries. Algorithm F keeps track (and indexes) all the unique messages M; for which F’
requests an H' hash.

When F’ asks for an H' hash of a message w || M; whose M; the forger F had not previously
seen (and whose w is an arbitrary I-bit string), F must fix up row ¢ of its matrix s before
responding.

It scans the row s;;, 0 < j < 2! For each entry sij = (x,b), F follows Step 3 of MapToGroup,
above, seeking points in G\ {O}. If none of the entries s;; yields a point in G\ {O}, row s,
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0 < j < 2!, is not patched. Otherwise, for the smallest j for which s;; maps into G1 \ {O},
F replaces s;; with a different point (z;, b;) defined as follows. Let Q; = H (Mz) e Gy It
Qi € G1\ O, then F constructs a random point @; € E(F,) satisfying (m/p)Q; = Q; as
follows:

1. Let z = (m/p)~! mod p. Note that m/p is integer since p divides m. Furthermore, m/p
has an inverse modulo p since p? does not divide m and hence m/p is relatively prime
to p.

2. Pick a random point T; € E(F,).

3. Set Qi = (wi,y:) = pTi + 2Qi.

Then Q; is a random point in E(F,) such that (m/p)Q; = Q;. Algorithm F sets s;; = (z;, b;)
where b; € {0,1} is set so that (z;,b;) maps to Qi in Step 3(a) of MapToGroup. Note that
MapToGroupy, (M;) now equals H(M;), and that the distribution of s;; is not changed by
the patching.

If Q; = O, then 2Q; = Q; = O for all z € Z,, and in particular for the private key z
corresponding to the challenge public key v. Algorithm F outputs the forgery (M;, O) and
halts. This forgery is nontrivial because F always queries its H oracle at a message M; before
querying its signing oracle at M;.

Once this preliminary patching has been completed, F is able to answer H' hash queries by
F' for strings w || M; by simply returning s;,,. The simulated H' which F’ sees is perfectly
indistinguishable from that in the real attack.

Signature queries. Algorithm F is asked for a signature on some message M;, indexed as above.
It first runs its H' algorithm above to fix up the row corresponding to M; in its s matrix.
This computation queries the H oracle at M; and may cause F to abort, having discovered
a trivial forgery. If the computation does not abort, MapToGroupy (M;) = H(M;) holds.
Algorithm F queries its own signing oracle at M;, obtaining a signature o; € Gi, which is
also the correct signature under the Map ToGroupy, hash function. Algorithm F responds to
the query with o;.

Output. Finally, 7’ halts. It either concedes failure, in which case so does F, or it returns a
message M* and a nontrivial forged signature o*. Algorithm F’ must not have queried its
signing oracle at M™, so neither did F.

Algorithm F first runs its H’ algorithm above to fix up the row corresponding to M* in its
s matrix. This assigns to M* an index ¢*, such that M;x = M*. This computation queries
the H oracle at M;= and may cause F to abort, having discovered a trivial forgery.

If the computation does not abort, MapToGroupg,(M*) = H(M™*) holds. Thus ¢* is a valid
forgery on message M™ under hash function H as well as MapToGroupy,. Since F did not
query its signing oracle at M*, the forgery is nontrivial for it as well as for F'. Algorithm F
outputs the valid and nontrivial forgery (M*,o*) and halts.

Algorithm F succeeds if either it discovers a trivial forgery (a message M such that H(M) = O),
or it perfectly simulates the environment that F’ expects. Whenever F’ succeeds in creating a
nontrivial forgery, so does F. If F’ succeeds with probability €, so does F. If F’ takes time ¢
to run, F takes time t, plus the s-array fix-up time that is potentially necessary on each hash
query, each signing query, and at the final output phase. If running the exponentiation in Step 3
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of the MapToGroup algorithm takes time cg,, then F takes time at most ¢ + QIccl (qu +qs + 1).
Algorithm F potentially makes a hash query for each hash query made by F’, for each signing
query made by F’, and in the final output phase. Algorithm F makes a signing query for each
signing query made by F’.

Thus if F' (t,qu, qs, €)-breaks the co-GDH signature scheme when given access to a random
oracle H' : {0,1}* — F,x{0,1} and MapToGroupy, then F (t+2lcq (qu+qs+1), qu+qs+1,qs, €)-
breaks the co-GDH signature scheme when given access to a full-domain random oracle hash H :
{0, 1}* - Gl.

Conversely, if the co-GDH signature scheme is (¢, gu, g5, €)-secure when instantiated with a full-
domain random oracle hash H : {0,1}* — Gy, it is (t— QIccqu, qu —qs —1,qs, €) when instantiated
with a random oracle H' : {0,1}* — F, x {0,1} and MapToGroupy:. O

4 Building co-GDH group pairs with small representations

Using the Weil [34, pp. 243-245] and Tate [21] pairings, we obtain co-GDH group pairs from certain
elliptic curves. We recall some necessary facts about elliptic curves (see, e.g., [34, 50]), and then
show how to use certain curves for short signatures.

4.1 Elliptic curves and the Weil pairing

Our goal is to construct bilinear groups (G1,G2) which lead to co-GDH group pairs as discussed
in Section 2. Let E/F, be an elliptic curve. We first define a useful constant called the security
multiplier of a subgroup (P) C E(F,).

Definition 4.1. Let ¢ be a prime power, and E/F, an elliptic curve with m points in E(F,). Let
P in E(F,) be a point of prime order p where p? { m. We say that the subgroup (P) has a security
multiplier «, for some integer a > 0, if the order of ¢ in F, is a. In other words:

plq®—1 and p)[qk—l forall k=1,2,...,aa—1 .

The security multiplier of E(F,) is the security multiplier of the largest prime order subgroup in
E(F,).

We describe two families of curves that provide o = 6. For standard security parameters this is
sufficient for obtaining short signatures. It is an open problem to build useful elliptic curves with
slightly higher «a, say a = 10 (see Section 4.5).

Our first step is to define G; and G5. We will then describe a bilinear map e : G; X Go — G,
describe an isomorphism 1 : G — G, and discuss the intractability of co-CDH on (G1, G2).

Balasubramanian-Koblitz. Let E/F, be an elliptic curve and let P € E(IF;) be a point of
prime order p with p { ¢. Suppose the subgroup (P) has security multiplier & > 1, i.e. p{q— 1.
Then, a useful result of Balasubramanian and Koblitz [3] shows that E(IFge) contains a point @ of
order p that is linearly independent of P. We set G1 = (P) and G2 = (Q). Then |G| = |G2| = p.
Note that G1 C E(F;) and Go C E(Fg«).

The Weil and Tate pairings. With notation as above, let E[p] be the group of points of order
dividing p in E(Fy). Then the group E[p] is isomorphic to Z, x Z, [50] and G1,G2 < E[p]. The
Weil pairing is a map e : Efp] x E[p] — Fya with the following properties:
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(i) Identity: for all R € E[p], e(R, R) = 1.
(ii) Bilinear: for all Ry, Re € E[p] and a,b € Z we have e(aR;,bRy) = e(Ry, RQ)“b.

(iii) Non-degenerate: if for R € E[p| we have e(R, R') = 1 for all R’ € E[p|, then R = O. It follows
that e(P, Q) # 1.

(iv) Computable: for all Ry, Ry € E[p|, the pairing e(R;, R2) can be computed in polynomial
time [39].

Note that e(R;, R2) = 1 if and only if R; and Rs are linearly dependent. See [37, 10] for a definition
of the Weil pairing and a description of the algorithm for computing it. The Tate pairing [21] is
another useful bilinear map on E|p|. It has properties similar to those of the Weil pairing, but does
not necessarily satisfy Property (i) (identity).

The Weil pairing on the curve E induces a computable, non-degenerate bilinear map e : G1 X
G2 — Fgo which enables us to solve the Decision co-Diffie-Hellman problem on the group pair
(G1,G2). When the Tate pairing induces a non-degenerate map on G1 x Ga, it can also be used to
solve Decision co-Diffie-Hellman on (G1, G2).

The trace map. We present a computable isomorphism ) : Go — G1, using the trace map, tr,
which sends points in E(Fge) to E(F,). Let o1,...,0, be the Galois maps of Fsa over F,. Also,
for R = (z,y) € E(Fgo) define 0;(R) = (0i(x),0i(y)). Then the trace map tr : E(Fga) — E(F,) is
defined by:

tr(R) = o01(R) + -+ -+ 0a(R) .

Proposition 4.2. Let P € E(F;) be a point of prime order p # q and let (P) have security
multiplier « > 1. Let Q € E(Fga) be a point of order p that is linearly independent of P. If
tr(Q) # O then tr is an isomorphism from (Q) to (P).

Proof. Suppose R € E(F,) is a point of order p. If R is not in (P) then P and R generate E[p]
and therefore E[p] C E(F;). It follows that e(P, R) € F, has order p since otherwise e would be
degenerate on E[p|. But since o > 1 we know that p does not divide ¢ — 1 and consequently there
are no elements of order p in Fy. Hence, we must have R € (P). It follows that all the points in
E(F,) of order p are contained in (P). Since tr(Q) # O, we know that tr(Q) € E(F,) has order p
and therefore tr(Q) € (P). Hence, tr is an isomorphism from (Q) to (P). O

Hence, when tr(Q) # O, the trace map is an isomorphism from Gy to G and is computable in
polynomial time in « and log g as required.

Intractability of co-CDH on (G1,G2). The remaining question is the difficulty of the co-CDH
problem on (Gi,G2). We review necessary conditions for CDH intractability. The best known
algorithm for solving co-CDH on (G1, G2) is to compute discrete-log in G. In fact, the discrete-log
and CDH problems in G are known to be computationally equivalent given some extra information
about the group Gp [35]. Therefore, it suffices to consider necessary conditions for making the
discrete-log problem on E(F,) intractable.

Let (P) be a subgroup of E(F,) of order p with security multiplier o. We briefly discuss two
standard ways for computing discrete-log in (P).
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1. MOV: Use an efficiently computable homomorphism, as in the MOV reduction [36], to map
the discrete log problem in (P) to a discrete log problem in some extension of Fy, say F,:. We
then solve the discrete log problem in in using the Number Field Sieve algorithm [49]. The
image of (P) under this homomorphism must be a subgroup of IF;- of order p. Thus we have
p|(¢" — 1), which by the definition of a implies that i > «. Hence, the MOV method can, at
best, reduce the discrete log problem in (P) to a discrete log problem in a subgroup of Fy..
Therefore, to ensure that discrete log is hard in (P) we want curves where « is sufficiently
large to make discrete log in Fya intractable.

2. Generic: Generic discrete log algorithms such as Baby-Step-Giant-Step and Pollard’s Rho
method [38] have a running time proportional to \/plogp. Therefore, we must ensure that p
is sufficiently large.

In summary, we want curves E/F, where both a generic discrete log algorithm in E(F,) and
the Number Field Sieve in Fj. are intractable. At the same time, since our signature scheme has
signatures of length [log, ] and public keys of length [« log, q], we wish to keep ¢ as small as
possible.

4.2 Co-GDH signatures from elliptic curves

We summarize the construction for co-GDH group pairs and adapt the signature scheme to use a
group of points on an elliptic curve.
The co-GDH group pair (G1,G2) we use is defined as follows:

1. Let E/F, be an elliptic curve and let P € E(F,;) be a point of prime order p where p{ g(¢—1)
and p? { [E(F,)|.

2. Let a > 1 be the security multiplier of (P). We assume a < p. By Balasubramanian and
Koblitz [3] there exists a point @) € E(F4«) that is linearly independent of P. It is easy to
construct such a @ in expected polynomial time once the number of points in E(Fg« ) is known.
Since o > 1 we know that @ ¢ E(F,). We ensure that tr(Q) # O. If tr(Q) = O replace Q by
Q@ + P. Then Q + P is of order p, it is linearly independent of P, and tr(Q + P) # O since
tr(P) =aP # O.

3. Set G1 = (P) and G2 = (Q).

4. Since P and @ are linearly independent, the Weil pairing gives a non-degenerate bilinear map
e: G1 X Gy — Fra. It can be computed in polynomial time in a and logg. When the Tate
pairing is non-degenerate on G; X G it can also be used as a bilinear map.

5. Since tr(Q) # O the trace map on E(Fg«) is an isomorphism from G5 to Gi computable in
polynomial time in « and log q.

With these subgroups Gi, G2 of the elliptic curve E/F, the signature scheme works as follows.
Recall that MapToGroupy is a hash function MapToGroupg: : {0,1}* — G built from a hash
function H': {0,1}* — I x {0, 1} as described in Section 3.2.

Key generation. Pick random x & Zy, and compute V « z@Q. The public key is V € E(Fya).
The private key is x.

Signing. Given a private key = € Z,, and a message M € {0,1}*, do:
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1. Compute R «— MapToGroupy, (M) € Gy,
2. 0 — xR € E(F,;), and

3. output the z-coordinate of o as the signature s on M. Then s € F,.
Verification. Given a public key V' € G2, a message M € {0,1}*, and a signature s € F, do:

1. Find a y € F; such that o = (s,y) is a point in E(F,). If no such y exists, output
invalid and stop.

2. Ensure that ¢ has order p. If it does not, output invalid and stop.
3. Compute R < MapToGroupy (M) € Gy,

4. Test if either e(0,Q) = e(R,V) or e(0,Q)"! =e(R,V).
If so, output valid; Otherwise, output invalid.

The signature length is [logy ¢]. Note that during verification we accept the signature if
e(0,Q)™! = e(R,V). This is to account for the fact that the signature s € F, could have come
from either the point o or —o in E(F,).

Security. By Theorem 3.2 it suffices to study the difficulty of co-CDH on (G, G2). The best
known algorithm for solving the co-CDH problem on (G, G2) requires the computation of a discrete
log in G or the computation of a discrete log in Fpa.

4.3 Using non-supersingular curves over fields of high characteristic

It remains to build elliptic curves with the desired security multiplier o. In the next two sections we
show curves with security multiplier, « = 6. We begin by describing a family of non-supersingular
elliptic curves with a = 6. This family is outlined by Miyaji et al. [41]. We call these MNT curves.

The idea is as follows: Suppose ¢ = (2¢)? + 1 and p = (2¢)?> — 2¢ + 1 for some ¢ € Z. Then it
can be verified that p divides ¢® — 1, but does not divide ¢* — 1 for 0 < i < 6. So, when p is prime,
a curve E/F, with p points is likely to have security multiplier oo = 6.

To build E/F, with p points as above we use complex multiplication [8, chapter VIII]. We briefly
explain how to do so. Suppose we had integers y,t and another positive integer D = 3 mod 4 such
that

= (t*+Dy?) /4 (2)

is an integer prime. Then the complex multiplication method will produce an elliptic curve E/F,
with ¢ + 1 — ¢ points in time O(D?(log q)®). The value t is called the trace of the curve.

We want a curve over F, with p points where ¢ = (2¢)? + 1 and p = (2¢)? — 2¢ + 1. Therefore,
t=q+1—p=2+1. Plugging these values into (2) we get 4((2¢)%2 + 1) = (2¢ + 1) + Dy? which
leads to:

(60 —1)2 —3Dy? = -8 . (3)

For a fixed D = 3 mod 4, we need integers ¢, y satisfying the equation above such that g = (2¢)% +1
is prime and p = (2¢)2 — 2¢ + 1 is prime (or is a small multiple of a prime). For any such solution
we can verify that we get a curve E(F;) with security multiplier & = 6. Finding integer solutions
l,y to an equation of type (3) is done by reducing it to Pell’s equation, whose solution is well
known [51].
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Discriminant | Signature Size | DLog Security | MOV Security
D [logy q] [logs p] [61ogy q]
13368643 149 149 894
254691883 150 147 900
8911723 157 157 942
62003 159 158 954
12574563 161 161 966
1807467 163 163 978
6785843 168 166 1008
28894627 177 177 1062
153855691 185 181 1110
658779 199 194 1194
1060147 203 203 1218
20902979 204 204 1224
9877443 206 206 1236

Table 1: Non-supersingular elliptic curves for co-GDH Signatures. E is a curve over the prime field
[F, and p is the largest prime dividing its order. The MOV reduction maps the curve onto the field
Fy. D is the discriminant of the complex multiplication field of E/F,,.

Table 1 gives some values of D that lead to suitable curves for our signature scheme. For
example, we get a curve E/F, where ¢ is a 168-bit prime. Signatures using this curve are 168-bits
while the best algorithm for co-CDH on E(F,) requires either (1) a generic discrete log algorithm
taking time approximately 283, or (2) a discrete log in a 1008-bit finite field of large characteristic.

4.4 A special supersingular curve

Another method for building curves with security multiplier o = 6 is to use a special supersingular
curve E/F3. Specifically, we use the curve E : y? = 22 + 22+ 1 over F3. The MOV reduction maps
the discrete log problem in E(Fg¢) to F6.. We use two simple lemmas to describe the behavior of
these curves. (See also [54, 33].)

Lemma 4.3. The curve Et defined by y? = 23 4+ 2z + 1 over F3 satisfies

EH(Fy)| = 3 +1+v3-30 when ¢==+1mod 12, and
7Y 3041 -v3-30 when £ =45mod 12,

The curve E~ defined by y* = 23 + 22 — 1 over F3 satisfies

|E~(Fy0)| = 3¢ 4+1—-v3-3' when ¢=41mod 12, and
N7 30414 v3-30 when £ =+5mod 12.

Proof. See [33, Section 2]. O

Lemma 4.4. Let E be an elliptic curve defined by y> = 2°+ 2z +1 over F3, where £ mod 12 equals
+1 or £5. Then |E(Fs)| divides 3% — 1.

Proof. See [54]. O
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Together, Lemmas 4.3 and 4.4 show that, for the relevant values of ¢, groups on the curves
E*t/Fs and E~/Fq will have security multiplier o at most 6 (more specifically: « | 6). Whether
the security parameter actually is 6 for a particular prime subgroup of a curve must be determined
by computation.

Automorphism of E, E~/Fge: Both curves ET and E~ have a useful automorphism that
make the prime-order subgroups of E1(F4) and E~(F4) into GDH groups (as opposed to co-GDH
group pairs). This fact can be used to shrink the size of the public key since it makes it possible
for the public key to live in E(F3¢) as opposed to E(Fsee).

The automorphism is defined as follows. For ¢ such that £ mod 12 is &1 or £5, compute three
elements of Fyee, u, v+, and r~, satisfying u? = —1, (r*)3+2rt +2=0,and (r")3+2r— -2 =0.
Now consider the following maps over Fge:

¢t (z,y) = (~z+r"uy) and ¢ (z,y) = (-2 +7,uy) .

Lemma 4.5. Let £ mod 12 equal +1 or +5. Then ¢ is an automorphism of E*/Fse and ¢~
is an automorphism of E~/Fsec. Moreover, if P is a point of order p on Et/Fs (or on E~/Fa)
then ¢ (P) (or ¢~ (P)) is a point of order p that is linearly independent of P.

Proof. See Silverman [50, p. 326, Case II]. O

Let E/F5 be one of ET or E~ and let P € E(F4) be a point of prime order p. Set G; = (P),
the group generated by P. Let ¢ : E(Fg¢) — E(F36) be the automorphism of the curve from above.
Define the modified Weil pairing é : G1 x G1 — Fg, as follows: é(P1, ) = e(Py1, ¢(F%)) where e
is the standard Weil pairing on E[p]. By Lemma 4.5 we know that ¢(P) is linearly independent
of P. Therefore, é is non-degenerate. It follows that G; is a GDH group; ¢ acts as a distortion
map [53, 31]. This has two implications for the signature scheme:

e Security of the signature scheme is based on the difficulty of the standard Computational
Diffie-Hellman problem in Gy (as opposed to the co-CDH problem).

e Public keys are elements of G and, hence, are shorter than public keys should the automor-
phism not exist.

Useful curves. Some useful instantiations of these curves are presented in Table 2. Note that
we restrict these instantiations to those where ¢ is prime, to avoid Weil-descent attacks [24, 25],
except for ¢ = 121. It has recently been shown that certain Weil-descent attacks are not effective
for this case [19].

Performance. Galbraith et al. [23] and Barreto et al. [4] show that the Frobenius map on the
curves ET, E~ can be used to speed the computation of the Weil and Tate pairings on these
curves. This results in a significant speed-up to the signature-verification algorithm. Consequently,
the signature scheme using these curves is much faster than the scheme using the curves from the
previous section.

The bad news. MOV reduces the discrete log problem on ET(F4) and E~ (Fs) to a discrete
log problem in Fi;,. A discrete-log algorithm due to Coppersmith [15, 49] is specifically designed
to compute discrete log in small characteristic fields. Consequently, a discrete-log problem in I3,
is much easier than a discrete-log problem in F;, where p is a prime of approximately the same size

164


cameras
Text Box
164


curve | [ Sig Size | DLog Security | MOV Security
[log, 3] [logs p] [61og, 3]
E- 79 126 126 752
ET 97 154 151 923
ET 121 192 155 1151
Et 149 237 220 1417
E*T | 163 259 256 1551
E~ | 163 259 259 1551
ET | 167 265 262 1589

Table 2: Supersingular elliptic curves for GDH signatures. Here p is the largest prime divisor of
|E(F4¢)|. The MOV reduction maps the curve onto a field of characteristic 3 of size 35¢.

as 3. To get security equivalent to DSA using a 1024-bit prime, we would have to use a curve
E(Fs3¢) where 3%¢ is much larger than 1024 bits. This leads to much longer signatures, defeating
the point of using these curves. In other words, for a fixed signature length, these supersingular
curves lead to a signature with reduced security compared to the curves of Section 4.3.

4.5 An open problem: higher security multipliers

With the curves of Section 4.3, a security multiplier of v = 6 is sufficient for constructing short
signatures with security comparable to DSA using a 1024-bit prime. However, to obtain security
comparable to DSA using a 2048-bit prime with o = 6 we get signatures of length 2048/6 = 342
bits. Elliptic curves with higher a, say a = 10, would result in short signatures when higher security
is needed (such as 2048-bit discrete-log security).

Let ¢ be a large prime power, say, ¢ > 2'%0. It is currently an open problem to construct an
elliptic curve E/F, such that E(FF,) has o = 10 and E(F,) has prime order. Several constructions [5,
20, 13] show how to build elliptic curves E such that E(F,) has a given security multiplier o.
However, the largest prime order subgroup of E(F,) is much smaller than ¢q. For example, the
constructions of [5, 20] give curves E/F, where the largest prime factor of |E(F,)| is of order ,/q.
Discrete log in such groups takes time approximately q'/*. Therefore, for a given security parameter,
the resulting signatures are of the same length as DSA signatures. The constructions in [13] give
curves where the largest prime factor of |E(FF,)| is greater than /g, but still substantially smaller
than ¢q. These curves result in signatures that are shorter than DSA, but longer than half the size
of DSA. The open problem is to build elliptic curves E/F, with a given security multiplier o where
E(F;) has prime order. Such curves would provide signatures that are half the size of DSA for any
given security level.

One could also build GDH groups of higher genus. Galbraith [22] constructs supersingular curves
of higher genus with a “large” security multiplier. For example, the Jacobian of the supersingular
curve y? +y = 2% + 2 has security multiplier 12 over Fy.. Since a point on the Jacobian of this
curve of genus 2 is characterized by two values in Fye (the two z-coordinates in a reduced divisor),
the length of the signature is 2¢ bits. Hence, we might obtain a signature of length 2¢ where the
security depends on computing CDH in the finite field Fq12¢. This factor of 6 between the length of
the signature and the degree of the finite field is the same as in the elliptic curve case. Hence, this
genus 2 curve does not improve the security of the signature, but does give more variety in curves
used for short signatures. Discrete log on the Jacobian of these curves is reducible to discrete-log in
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a field of characteristic 2 and consequently one must take Coppersmith’s discrete log algorithm [15]
into account, as discussed at the end of Section 4.4.

To obtain larger security multipliers, Rubin and Silverberg [48] propose certain Abelian varieties.
They show that signatures produced using the curve of Section 4.4 can be shortened by 20%. The
result is an n-bit signature where the pairing reduces the discrete log problem to a finite field of
size approximately 275", This is the only useful example we currently know of where the multiplier
is greater than 6.

5 Extensions

Our signatures support threshold signatures and batch verification. Surprisingly, signatures from
distinct people on distinct messages can be aggregated into a single convincing signature. We
briefly survey these extensions here and refer to Boldyreva [9], Verheul [52], and Boneh et al. [11]
for a full description and proofs of security.

5.1 Aggregate signatures

Common environments require managing many signatures by different parties on distinct messages.
For example, certificate chains contain signatures on distinct certificates issued by various Certifi-
cate Authorities. Our signature scheme enables us to aggregate multiple signatures by distinct
entities on distinct messages into a single short signature. Any party that has all the signatures
can aggregate signatures, and aggregation can be done incrementally: Two signatures are aggre-
gated, then a third is added to the aggregate, and so on. See [11] for more applications.

Let (G1,G2) be a bilinear group pair of prime order p. Suppose n users each have a public-
private key pair. For ¢ = 1,...,n, user i has private key z; € Z, and public key v; = g5* € Gs.

Suppose user i signs a message M; € {0,1}* to obtain the signature o; = H(M;)" € G1. The
aggregate of all these signatures is computed simply as ¢ « o109 -0, € G1.

Aggregate verification: We are given all public keys vy, ..., v, € G, all messages M1,..., M, €
{0,1}*, and the aggregate signature o € G1. To verify that, for all ¢ = 1,...,n, user ¢ has signed
message M;, we test that

1. The messages My, ..., M, are all distinct, and

2. e(0,92) = [Ti=y e(H (M), vi).

If both conditions hold, we accept the aggregate signature. Otherwise, we reject.

We refer to [11] for the exact security model and the proof of security. An attacker who can
existentially forge an aggregate signature can be used to solve co-CDH on (Gi,G2). We note
that aggregate signature verification requires a bilinear map — a generic Gap Diffie-Hellman group
is apparently insufficient. Generic Gap Diffie-Hellman groups are sufficient for verifying aggregate
signatures on the same message by different people, or for verifying aggregate signatures on distinct
messages by the same person.

5.2 Batch verification

Suppose n users all sign the same message M € {0,1}*. We obtain n signatures o1,...,0,. We
show that these n signatures can be verified as a batch much faster than verifying them one by
one. A similar property holds for other signature schemes [6].
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Let (G1,G2) be a co-GDH group pair of prime order p. Suppose user i’s private key is ; € Z,,
and his public key is v; = g5 € Ga. Signature o; is 0; = H(M)® € G;. To verify the n signatures
as a batch we use a technique due to Bellare et al. [6]:

1. Pick random integers c1, ..., ¢, from the range [0, B] for some value B. This B controls the
error probability as discussed below.

2. Compute V [, v" € Go and U — [[I, 07" € Gy.

3. Test that (g2, V, H(M),U) is a co-Diffie-Hellman tuple. Accept all n signatures if so; reject
otherwise.

Theorem 3.3 of [6] shows that we incorrectly accept the n signatures with probability at most
1/B. Hence, verifying the n signatures as a batch is faster than verifying them one by one. Note
that if all signers are required to prove knowledge of their private keys, then takingc; =--- =¢, =1
is sufficient, yielding even faster batch verification [9]. A similar batch verification procedure can
be used to verify quickly n signatures on distinct messages issued by the same public key.

5.3 Threshold signatures

Using standard secret sharing techniques [38], our signature scheme gives a robust t-out-of-n thresh-
old signature [9]. In a threshold signature scheme, there are n parties where each possesses a share
of a private key. Each party can use its share of the private key to produce a share of a signature
on some message M. A complete signature on M can only be constructed if at least ¢ shares of the
signature are available.

A robust t-out-of-n threshold signature scheme derives from our signature scheme as follows.
A central authority generates a public/private key pair. Let = € Z, be the private key and
v = g5 € G2 be the public key. The central authority picks a random polynomial w € Zy[X] of

degree at most ¢ — 1 such that w(0) = z. For i = 1,...,n, the authority gives user i the value

x; = w(1), its share of the private key. The authority publishes the public key v and n values
.

U; = go' € Go.

When a signature on a message M € {0,1}* is needed each party that wishes to participate in
signature generation publishes its share of the signature as o; = H(M)* € G;. Without loss of
generality, assume users 1,...,t participate and generate shares o1, ...,0;. Anyone can verify that
share o; is valid by checking that (g2, u;, H(M), 0;) is a co-Diffie-Hellman tuple. When all ¢ shares
are valid, the complete signature is recovered as

t t .
L (0 —
o — Haf\i where \; = HZ;L#Z( j) (mod p) .

il [Tici (i =)
If fewer than t users are able to generate a signature on some message M then these users can
be used to solve co-CDH on (G1,G2) [9]. This threshold scheme is robust: A participant who
contributes a bad partial signature o; will be detected immediately since (g2, u;, H(M), o;) will not
be a co-Diffie-Hellman tuple.

We note that there is no need for a trusted third party to generate shares of the private key.
The n users can generate shares of the private key without the help of a trusted third party using
the protocol due to Gennaro et al. [26], which is a modification of a protocol due to Pedersen [46].
This protocol does not rely on the difficulty of DDH for security and can thus be employed on Gap
Diffie-Hellman groups.
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6 Conclusions

We presented a short signature based on bilinear maps on elliptic curves. A signature is only
one element in a finite field. Standard signatures based on discrete log such as DSA require two
elements. Our signatures are much shorter than all current variants of DSA for the same security.
We showed that the scheme is existentially unforgeable under a chosen message attack (in the
random oracle model), assuming the Computational Diffie-Hellman problem is hard on certain
elliptic-curve groups. More generally, the signature scheme can be instantiated on any Gap Diffie-
Hellman group or co-GDH group pair.

We presented two families of elliptic curves that are suitable for obtaining short signatures. The
first, based on [41], is a family of non-supersingular curves over a prime finite field. The second uses
supersingular curves over [F5.. Both families of curves produce n-bit signatures and the discrete log
problem on these curves is reducible to a discrete log problem in a finite field of size approximately
26n  Using the first family of curves, for 1024-bit security we get signatures of size approximately
[1024/6] = 171 bits.

We expect that the first family of curves (the non-supersingular curves) will be the one used for
short signatures: 171-bit signatures with 1024-bit security. As discussed at the end of Section 4.4,
the second family of curves (the supersingular curve over F5¢) should not be used for short signa-
tures. The problem is that discrete log on these curves reduces to a discrete log in a finite field of
characteristic 3 where Coppersmith’s algorithm can be used.

Implementation results [23, 4] indicate that the signature scheme performs well. Signature
generation is just a simple multiplication on an elliptic curve and is faster than RSA signature
generation. Verification requires two computations of the bilinear map and is slower than RSA
signature verification.

In Section 4.5 we outlined an open problem that would enable us to get even better security
while maintaining the same length signatures. We hope future work on constructing elliptic curves
or higher genus curves will help in solving this problem.
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Abstract

We propose a fully functional identity-based encryption scheme (IBE). The scheme has chosen
ciphertext security in the random oracle model assuming a variant of the computational Diffie-
Hellman problem. Our system is based on bilinear maps between groups. The Weil pairing on
elliptic curves is an example of such a map. We give precise definitions for secure identity based
encryption schemes and give several applications for such systems.

1 Introduction

In 1984 Shamir [41] asked for a public key encryption scheme in which the public key can be an arbitrary
string. In such a scheme there are four algorithms: (1) setup generates global system parameters and
a master-key, (2) extract uses the master-key to generate the private key corresponding to an arbitrary
public key string ID € {0,1}*, (3) encrypt encrypts messages using the public key ID, and (4) decrypt
decrypts messages using the corresponding private key.

Shamir’s original motivation for identity-based encryption was to simplify certificate management
in e-mail systems. When Alice sends mail to Bob at bob@company . com she simply encrypts her message
using the public key string “bob@company.com”. There is no need for Alice to obtain Bob’s public key
certificate. When Bob receives the encrypted mail he contacts a third party, which we call the Private
Key Generator (PKG). Bob authenticates himself to the PKG in the same way he would authenticate
himself to a CA and obtains his private key from the PKG. Bob can then read his e-mail. Note that
unlike the existing secure e-mail infrastructure, Alice can send encrypted mail to Bob even if Bob
has not yet setup his public key certificate. Also note that key escrow is inherent in identity-based
e-mail systems: the PKG knows Bob’s private key. We discuss key revocation, as well as several new
applications for IBE schemes in the next section.

Since the problem was posed in 1984 there have been several proposals for IBE schemes [11, 45,
44, 31, 25] (see also [33, p. 561]). However, none of these are fully satisfactory. Some solutions require
that users not collude. Other solutions require the PKG to spend a long time for each private key
generation request. Some solutions require tamper resistant hardware. It is fair to say that until
the results in [5] constructing a usable IBE system was an open problem. Interestingly, the related
notions of identity-based signature and authentication schemes, also introduced by Shamir [41], do
have satisfactory solutions [15, 14].

In this paper we propose a fully functional identity-based encryption scheme. The performance
of our system is comparable to the performance of ElGamal encryption in Fj. The security of our
system is based on a natural analogue of the computational Diffie-Hellman assumption. Based on
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this assumption we show that the new system has chosen ciphertext security in the random oracle
model. Using standard techniques from threshold cryptography [20, 22] the PKG in our scheme can
be distributed so that the master-key is never available in a single location. Unlike common threshold
systems, we show that robustness for our distributed PKG is free.

Our IBE system can be built from any bilinear map e : G; x G; — G2 between two groups G, G2 as
long as a variant of the Computational Diffie-Hellman problem in G; is hard. We use the Weil pairing
on elliptic curves as an example of such a map. Until recently the Weil pairing has mostly been used for
attacking elliptic curve systems [32, 17]. Joux [26] recently showed that the Weil pairing can be used
for “good” by using it for a protocol for three party one round Diffie-Hellman key exchange. Sakai et
al. [40] used the pairing for key exchange and Verheul [46] used it to construct an ElGamal encryption
scheme where each public key has two corresponding private keys. In addition to our identity-based
encryption scheme, we show how to construct an ElGamal encryption scheme with “built-in” key
escrow, i.e., where one global escrow key can decrypt ciphertexts encrypted under any public key.

To argue about the security of our IBE system we define chosen ciphertext security for identity-
based encryption. Our model gives the adversary more power than the standard model for chosen
ciphertext security [37, 2]. First, we allow the attacker to attack an arbitrary public key ID of her
choice. Second, while mounting a chosen ciphertext attack on ID we allow the attacker to obtain from
the PKG the private key for any public key of her choice, other than the private key for ID. This models
an attacker who obtains a number of private keys corresponding to some identities of her choice and
then tries to attack some other public key ID of her choice. Even with the help of such queries the
attacker should have negligible advantage in defeating the semantic security of the system.

The rest of the paper is organized as follows. Several applications of identity-based encryption are
discussed in Section 1.1. We then give precise definitions and security models in Section 2. We describe
bilinear maps with certain properties in Section 3. Our identity-based encryption scheme is presented
in Section 4 using general bilinear maps. Then a concrete identity based system from the Weil pairing is
given in Section 5. Some extensions and variations (efficiency improvements, distribution of the master-
key) are considered in Section 6. Our construction for ElGamal encryption with a global escrow key is
described in Section 7. Section 8 gives conclusions and some open problems. The Appendix contains
a more detailed discussion of the Weil pairing.

1.1 Applications for Identity-Based Encryption

The original motivation for identity-based encryption is to help the deployment of a public key infras-
tructure. In this section, we show several other unrelated applications.

1.1.1 Revocation of Public Keys

Public key certificates contain a preset expiration date. In an IBE system key expiration can be done by
having Alice encrypt e-mail sent to Bob using the public key: “bob@company.com | current-year”.
In doing so Bob can use his private key during the current year only. Once a year Bob needs to obtain
a new private key from the PKG. Hence, we get the effect of annual private key expiration. Note
that unlike the existing PKI, Alice does not need to obtain a new certificate from Bob every time Bob
refreshes his private key.

One could potentially make this approach more granular by encrypting e-mail for Bob using
“bob@company.com || current-date”. This forces Bob to obtain a new private key every day.

174



This might be possible in a corporate PKI where the PKG is maintained by the corporation. With this
approach key revocation is very simple: when Bob leaves the company and his key needs to be revoked,
the corporate PKG is instructed to stop issuing private keys for Bob’s e-mail address. As a result, Bob
can no longer read his email. The interesting property is that Alice does not need to communicate with
any third party certificate directory to obtain Bob’s daily public key. Hence, identity based encryption
is a very efficient mechanism for implementing ephemeral public keys. Also note that this approach
enables Alice to send messages into the future: Bob will only be able to decrypt the e-mail on the date
specified by Alice (see [38, 12] for methods of sending messages into the future using a stronger security
model).

Managing user credentials. A simple extension to the discussion above enables us to manage
user credentials using the IBE system. Suppose Alice encrypts mail to Bob using the public key:
“bob@company.com || current-year | clearance=secret”. Then Bob will only be able to read
the email if on the specified date he has secret clearance. Consequently, it is easy to grant and revoke
user credentials using the PKG.

1.1.2 Delegation of Decryption Keys

Another application for IBE systems is delegation of decryption capabilities. We give two example
applications. In both applications the user Bob plays the role of the PKG. Bob runs the setup algorithm
to generate his own IBE system parameters params and his own master-key. Here we view params as
Bob’s public key. Bob obtains a certificate from a CA for his public key params. When Alice wishes to
send mail to Bob she first obtains Bob’s public key params from Bob’s public key certificate. Note that
Bob is the only one who knows his master-key and hence there is no key-escrow with this setup.

1. Delegation to a laptop. Suppose Alice encrypts mail to Bob using the current date as the IBE
encryption key (she uses Bob’s params as the IBE system parameters). Since Bob has the master-
key he can extract the private key corresponding to this IBE encryption key and then decrypt the
message. Now, suppose Bob goes on a trip for seven days. Normally, Bob would put his private key
on his laptop. If the laptop is stolen the private key is compromised. When using the IBE system
Bob could simply install on his laptop the seven private keys corresponding to the seven days of the
trip. If the laptop is stolen, only the private keys for those seven days are compromised. The master-
key is unharmed. This is analogous to the delegation scenario for signature schemes considered by
Goldreich et al. [23].

2. Delegation of duties. Suppose Alice encrypts mail to Bob using the subject line as the IBE
encryption key. Bob can decrypt mail using his master-key. Now, suppose Bob has several assistants
each responsible for a different task (e.g. one is ‘purchasing’, another is ‘human-resources’, etc.). Bob
gives one private key to each of his assistants corresponding to the assistant’s responsibility. Each
assistant can then decrypt messages whose subject line falls within its responsibilities, but it cannot
decrypt messages intended for other assistants. Note that Alice only obtains a single public key from
Bob (params), and she uses that public key to send mail with any subject line of her choice. The
mail can only be read by the assistant responsible for that subject.

More generally, IBE can simplify security systems that manage a large number of public keys. Rather
than storing a big database of public keys the system can either derive these public keys from usernames,
or simply use the integers 1,...,n as distinct public keys.
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2 Definitions

Identity-Based Encryption. An identity-based encryption scheme & is specified by four random-
ized algorithms: Setup, Extract, Encrypt, Decrypt:

Setup: takes a security parameter k and returns params (system parameters) and master-key. The
system parameters include a description of a finite message space M, and a description of a finite
ciphertext space C. Intuitively, the system parameters will be publicly known, while the master-key
will be known only to the “Private Key Generator” (PKG).

Extract: takes as input params, master-key, and an arbitrary ID € {0,1}*, and returns a private key
d. Here ID is an arbitrary string that will be used as a public key, and d is the corresponding private
decryption key. The Extract algorithm extracts a private key from the given public key.

Encrypt: takes as input params, ID, and M € M. It returns a ciphertext C' € C.
Decrypt: takes as input params, C' € C, and a private key d. It return M € M.

These algorithms must satisfy the standard consistency constraint, namely when d is the private key
generated by algorithm Extract when it is given ID as the public key, then

VM € M : Decrypt(params,C,d) = M where C = Encrypt(params, 1D, M)

Chosen ciphertext security. Chosen ciphertext security (IND-CCA) is the standard acceptable
notion of security for a public key encryption scheme [37, 2, 13]. Hence, it is natural to require that an
identity-based encryption scheme also satisfy this strong notion of security. However, the definition of
chosen ciphertext security must be strengthened a bit. The reason is that when an adversary attacks
a public key ID in an identity-based system, the adversary might already possess the private keys of
users IDq,...,ID,, of her choice. The system should remain secure under such an attack. Hence, the
definition of chosen ciphertext security must allow the adversary to obtain the private key associated
with any identity ID; of her choice (other than the public key ID being attacked). We refer to such
queries as private key extraction queries. Another difference is that the adversary is challenged on a
public key ID of her choice (as opposed to a random public key).

We say that an identity-based encryption scheme £ is semantically secure against an adaptive
chosen ciphertext attack (IND-ID-CCA) if no polynomially bounded adversary A has a non-negligible
advantage against the Challenger in the following IND-ID-CCA game:

Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives
the adversary the resulting system parameters params. It keeps the master-key to itself.
Phase 1: The adversary issues queries qi, ..., ¢, Where query g; is one of:

— Extraction query (ID;). The challenger responds by running algorithm Extract to gen-
erate the private key d; corresponding to the public key (ID;). It sends d; to the
adversary.

— Decryption query (ID;, C;). The challenger responds by running algorithm Extract to
generate the private key d; corresponding to ID;. It then runs algorithm Decrypt to
decrypt the ciphertext C; using the private key d;. It sends the resulting plaintext to
the adversary.

These queries may be asked adaptively, that is, each query ¢; may depend on the replies

toq1,.-.,Qi—1.
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Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length
plaintexts My, M1 € M and an identity ID on which it wishes to be challenged. The only
constraint is that ID did not appear in any private key extraction query in Phase 1.

The challenger picks a random bit b € {0,1} and sets C' = Encrypt(params, ID, My). It
sends C' as the challenge to the adversary.

Phase 2: The adversary issues more queries ¢m+1,-- ., gn Where query g; is one of:
— Extraction query (ID;) where ID; # ID. Challenger responds as in Phase 1.
— Decryption query (ID;, C;) # (ID, C). Challenger responds as in Phase 1.
These queries may be asked adaptively as in Phase 1.

Guess: Finally, the adversary outputs a guess b’ € {0,1} and wins the game if b = b'.

We refer to such an adversary A as an IND-ID-CCA adversary. We define adversary A’s
advantage in attacking the scheme &£ as the following function of the security parameter k
(k is given as input to the challenger):  Advg (k) = |Pr[b =b] — 3|.

The probability is over the random bits used by the challenger and the adversary.

Using the IND-ID-CCA game we can define chosen ciphertext security for IBE schemes. As usual, we
say that a function g : R — R is negligible if for any d > 0 we have |g(k)| < 1/k? for sufficiently large k.

Definition 2.1. We say that the IBE system &£ is semantically secure against an adaptive chosen ci-
phertext attack if for any polynomial time IND-ID-CCA adversary A the function Adve 4(k) is negligible.
As shorthand, we say that € is IND-ID-CCA secure.

Note that the standard definition of chosen ciphertext security (IND-CCA) [37, 2] is the same as
above except that there are no private key extraction queries and the adversary is challenged on a
random public key (rather than a public key of her choice). Private key extraction queries are related
to the definition of chosen ciphertext security in the multiuser settings [7]. After all, our definition
involves multiple public keys belonging to multiple users. In [7] the authors show that that multiuser
IND-CCA is reducible to single user IND-CCA using a standard hybrid argument. This does not hold
in the identity-based settings, IND-ID-CCA, since the adversary gets to choose which public keys to
corrupt during the attack. To emphasize the importance of private key extraction queries we note that
our IBE system can be easily modified (by removing one of the hash functions) into a system which
has chosen ciphertext security when private extraction queries are disallowed. However, the scheme is
completely insecure when extraction queries are allowed.

Semantically secure identity based encryption. The proof of security for our IBE system makes
use of a weaker notion of security known as semantic security (also known as semantic security against
a chosen plaintext attack) [24, 2]. Semantic security is similar to chosen ciphertext security (IND-ID-
CCA) except that the adversary is more limited; it cannot issue decryption queries while attacking the
challenge public key. For a standard public key system (not an identity based system) semantic security
is defined using the following game: (1) the adversary is given a random public key generated by the
challenger, (2) the adversary outputs two equal length messages My and M; and receives the encryption
of M from the challenger where b is chosen at random in {0, 1}, (3) the adversary outputs b’ and wins
the game if b = 0/. The public key system is said to be semantically secure if no polynomial time
adversary can win the game with a non-negligible advantage. As shorthand we say that a semantically
secure public key system is IND-CPA secure. Semantic security captures our intuition that given a
ciphertext the adversary learns nothing about the corresponding plaintext.
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To define semantic security for identity based systems (denoted IND-ID-CPA) we strengthen the
standard definition by allowing the adversary to issue chosen private key extraction queries. Similarly,
the adversary is challenged on a public key ID of her choice. We define semantic security for identity
based encryption schemes using an IND-ID-CPA game. The game is identical to the IND-ID-CCA game
defined above except that the adversary cannot make any decryption queries. The adversary can only
make private key extraction queries. We say that an identity-based encryption scheme £ is semantically
secure (IND-ID-CPA) if no polynomially bounded adversary .A has a non-negligible advantage against
the Challenger in the following IND-ID-CPA game:

Setup: The challenger takes a security parameter k and runs the Setup algorithm. It gives
the adversary the resulting system parameters params. It keeps the master-key to itself.

Phase 1: The adversary issues private key extraction queries ID4,...,ID,,. The challenger
responds by running algorithm Extract to generate the private key d; corresponding to
the public key ID;. It sends d; to the adversary. These queries may be asked adaptively.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal length
plaintexts My, M1 € M and a public key ID on which it wishes to be challenged. The
only constraint is that ID did not appear in any private key extraction query in Phase 1.
The challenger picks a random bit b € {0,1} and sets C' = Encrypt(params, ID, My). It
sends C' as the challenge to the adversary.

Phase 2: The adversary issues more extraction queries 1D, 11, ...,|D,. The only constraint
is that ID; # ID. The challenger responds as in Phase 1.

Guess: Finally, the adversary outputs a guess b’ € {0,1} and wins the game if b = b'.

We refer to such an adversary A as an IND-ID-CPA adversary. As we did above, the
advantage of an IND-ID-CPA adversary A against the scheme & is the following function of
the security parameter k:  Adve (k) = |Pr[b =] — 3|.

The probability is over the random bits used by the challenger and the adversary.

Definition 2.2. We say that the IBE system £ is semantically secure if for any polynomial time IND-
ID-CPA adversary A the function Adve a(k) is negligible. As shorthand, we say that € is IND-ID-CPA

Secure.

One way identity-based encryption. One can define an even weaker notion of security called one-
way encryption (OWE) [16]. Roughly speaking, a public key encryption scheme is a one-way encryption
if given the encryption of a random plaintext the adversary cannot produce the plaintext in its entirety.
One way encryption is a weak notion of security since there is nothing preventing the adversary from,
say, learning half the bits of the plaintext. Hence, one-way encryption schemes do not generally provide
secure encryption. In the random oracle model one-way encryption schemes can be used for encrypting
session-keys (the session-key is taken to be the hash of the plaintext). We note that one can extend
the notion of one-way encryption to identity based systems by adding private key extraction queries to
the definition. We do not give the full definition here since in this paper we use semantic security as
the weakest notion of security. See [5] for the full definition of identity based one-way encryption, and
its use as part of an alternative proof strategy for our main result.

Random oracle model. To analyze the security of certain natural cryptographic constructions Bel-
lare and Rogaway introduced an idealized security model called the random oracle model [3]. Roughly
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speaking, a random oracle is a function H : X — Y chosen uniformly at random from the set of all
functions {h : X — Y} (we assume Y is a finite set). An algorithm can query the random oracle at
any point x € X and receive the value H(z) in response. Random oracles are used to model crypto-
graphic hash functions such as SHA-1. Note that security in the random oracle model does not imply
security in the real world. Nevertheless, the random oracle model is a useful tool for validating natural
cryptographic constructions. Security proofs in this model prove security against attackers that are
confined to the random oracle world.

Notation. From here on we use Z, to denote the group {0,...,¢q — 1} under addition modulo g. For
a group G of prime order we use G* to denote the set G* = G \ {O} where O is the identity element
in the group G. We use Z* to denote the set of positive integers.

3 Bilinear maps and the Bilinear Diffie-Hellman Assumption

Let G1 and Gg be two groups of order ¢ for some large prime g. Our IBE system makes use of a bilinear

map € : Gy x G; — Gy between these two groups. The map must satisfy the following properties:

1. Bilinear: We say that a map ¢ : Gy x G; — Gq is bilinear if é(aP,bQ) = é(P, Q) for all P,Q € G,
and all a,b € Z.

2. Non-degenerate: The map does not send all pairs in G; x Gq to the identity in Go. Observe that
since G1,Go are groups of prime order this implies that if P is a generator of G; then é(P, P) is a
generator of Go.

3. Computable: There is an efficient algorithm to compute é(P, Q) for any P,Q € G;.

A bilinear map satisfying the three properties above is said to be an admissible bilinear map. In
Section 5 we give a concrete example of groups G, Gy and an admissible bilinear map between them.
The group G; is a subgroup of the additive group of points of an elliptic curve E/F,. The group G is a
subgroup of the multiplicative group of a finite field F*,. Therefore, throughout the paper we view Gy
as an additive group and G2 as a multiplicative group. As we will see in Section 5.1, the Weil pairing
can be used to construct an admissible bilinear map between these two groups.

The existence of the bilinear map é : G; x G; — Go as above has two direct implications to these
groups.

The MOV reduction: Menezes, Okamoto, and Vanstone [32] show that the discrete log problem in
G is no harder than the discrete log problem in Go. To see this, let P,Q) € G; be an instance
of the discrete log problem in G where both P, @ have order q. We wish to find an o € Z, such
that Q@ = aP. Let g = é(P, P) and h = é(Q, P). Then, by bilinearity of é we know that h = g®.
By non-degeneracy of é both g, h have order ¢ in Go. Hence, we reduced the discrete log problem
in G; to a discrete log problem in Go. It follows that for discrete log to be hard in G; we must
choose our security parameter so that discrete log is hard in G2 (see Section 5).

Decision Diffie-Hellman is Easy: The Decision Diffie-Hellman problem (DDH) [4] in G; is to dis-
tinguish between the distributions (P, aP,bP,abP) and (P,aP,bP,cP) where a,b, ¢ are random
in Z; and P is random in Gj. Joux and Nguyen [28] point out that DDH in Gy is easy. To see
this, observe that given P, aP,bP,cP € G} we have

c=abmodq <= ¢é(P,cP)=¢é(aP,bP).
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The Computational Diffie-Hellman problem (CDH) in G; can still be hard (CDH in G is to find
abP given random (P, aP,bP)). Joux and Nguyen [28] give examples of mappings é : G; x G; —
Go where CDH in Gj is believed to be hard even though DDH in G is easy.

3.1 The Bilinear Diffie-Hellman Assumption (BDH)

Since the Decision Diffie-Hellman problem (DDH) in G; is easy we cannot use DDH to build cryp-
tosystems in the group Gji. Instead, the security of our IBE system is based on a variant of the
Computational Diffie-Hellman assumption called the Bilinear Diffie-Hellman Assumption (BDH).

Bilinear Diffie-Hellman Problem. Let Gi, G2 be two groups of prime order ¢. Let é : G; x Gy —
G2 be an admissible bilinear map and let P be a generator of G;. The BDH problem in (Gq, Gy, é) is
as follows: Given (P, aP,bP,cP) for some a,b,c € Z; compute W = é(P, P)%¢ ¢ Go. An algorithm A
has advantage € in solving BDH in (G, Go, é) if

Pr | A(P,aP,bP, cP) = é(P, P)aﬂ > ¢

where the probability is over the random choice of a, b, ¢ in Zj, the random choice of P € G7, and the
random bits of A.

BDH Parameter Generator. We say that a randomized algorithm G is a BDH parameter generator
if (1) G takes a security parameter k € Z*, (2) G runs in polynomial time in k, and (3) G outputs a
prime number ¢, the description of two groups Gi, Go of order g, and the description of an admissible
bilinear map é : G; x G; — Gz. We denote the output of G by G(1¥) = (¢, G, G, ¢é). The security
parameter k is used to determine the size of ¢; for example, one could take g to be a random k-bit
prime. For ¢ = 1,2 we assume that the description of the group G; contains polynomial time (in k)
algorithms for computing the group action in G; and contains a generator of G;. The generator of G;
enables us to generate uniformly random elements in G;. Similarly, we assume that the description of
é contains a polynomial time algorithm for computing é. We give an example of a BDH parameter
generator in Section 5.1.

BDH Assumption. Let G be a BDH parameter generator. We say that an algorithm A has advan-
tage €(k) in solving the BDH problem for G if for sufficiently large k:

<q7G17(G'27é> — g(lk)’ > E(k’)

Advga(k) = Pr | A(g,G1, G, 6, P,aP,bP,cP) = &P, P)™e | 2 7.0 0 70 0| >
15 @, 0,C<— q

We say that G satisfies the BDH assumption if for any randomized polynomial time (in k) algorithm
A we have that Advg (k) is a negligible function. When G satisfies the BDH assumption we say that
BDH is hard in groups generated by G.

In Section 5.1 we give some examples of BDH parameter generators that are believed to satisfy
the BDH assumption. We note that Joux [26] (implicitly) used the BDH assumption to construct a
one-round three party Diffie-Hellman protocol. The BDH assumption is also needed for constructions
in [46, 40].
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Hardness of BDH. It is interesting to study the relationship of the BDH problem to other hard
problems used in cryptography. Currently, all we can say is that the BDH problem in (Gi, G, é) is
no harder than the CDH problem in Gy or Gs. In other words, an algorithm for CDH in G; or Go is
sufficient for solving BDH in (G, Gg,é). The converse is currently an open problem: is an algorithm
for BDH sufficient for solving CDH in G or in G2? We refer to a survey by Joux [27] for a more
detailed analysis of the relationship between BDH and other standard problems.

We note that in all our examples (in Section 5.1) the isomorphisms from G to Gz induced by the
bilinear map are believed to be one-way functions. More specifically, for a point () € GJ define the
isomorphism fo : Gi — G2 by fo(P) = é(P,Q). If any one of these isomorphisms turns out to be
invertible then BDH is easy in (G, Gg, ). Fortunately, an efficient algorithm for inverting fq for some
fixed @ would imply an efficient algorithm for deciding DDH in the group Gs. In all our examples
DDH is believed to be hard in the group Ga. Hence, all the isomorphisms fg : G — G2 induced by
the bilinear map are believed to be one-way functions.

4 Our Identity-Based Encryption Scheme

We describe our scheme in stages. First we give a basic identity-based encryption scheme which is not
secure against an adaptive chosen ciphertext attack. The only reason for describing the basic scheme
is to make the presentation easier to follow. Our full scheme, described in Section 4.2, extends the
basic scheme to get security against an adaptive chosen ciphertext attack (IND-ID-CCA) in the random
oracle model. In Section 4.3 we relax some of the requirements on the hash functions.

The presentation in this section uses an arbitrary BDH parameter generator G satisfying the BDH
assumption. In Section 5 we describe a concrete IBE system using the Weil pairing.

4.1 Basicldent

To explain the basic ideas underlying our IBE system we describe the following simple scheme, called
Basicldent. We present the scheme by describing the four algorithms: Setup, Extract, Encrypt, Decrypt.
We let k be the security parameter given to the setup algorithm. We let G be some BDH parameter
generator.

Setup: Given a security parameter k € Z™, the algorithm works as follows:

Step 1: Run G on input k£ to generate a prime ¢, two groups Gi,Go of order ¢, and an admissible
bilinear map é : G; x Gy — Go. Choose a random generator P € G1.

Step 2: Pick a random s € Zj and set Ppyp = sP.

Step 3: Choose a cryptographic hash function H; : {0,1}* — Gj. Choose a cryptographic hash
function Hs : Gy — {0,1}" for some n. The security analysis will view Hy, Hy as random oracles.

The message space is M = {0, 1}". The ciphertext space is C = G} x {0,1}". The system parameters
are params = (¢, G1, Gz, é,n, P, Pyyp, H1, H2). The master-key is s € Z.

Extract: For a given string ID € {0,1}* the algorithm does: (1) computes Qp = H;(ID) € G7, and
(2) sets the private key dp to be djp = sQp where s is the master key.

Encrypt: To encrypt M € M under the public key ID do the following: (1) compute Q,, = H(ID) €
1, (2) choose a random r € Z7, and (3) set the ciphertext to be

C = (rP, M © Ha(g,)) where gp= é(QIDappub) € G;
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Decrypt: Let C = (U, V) € C be a ciphertext encrypted using the public key ID. To decrypt C' using
the private key dip € G} compute:

This completes the description of Basicldent. We first verify consistency. When everything is computed
as above we have:

1. During encryption M is bitwise exclusive-ored with the hash of:  gf..

2. During decryption V is bitwise exclusive-ored with the hash of:  é(dpp, U).

These masks used during encryption and decryption are the same since:

é(dm, U) = é(SQm’TP) = é(QIDa P)ST = é(QID7Ppub)r = gﬁ)

Thus, applying decryption after encryption produces the original message M as required. Performance
considerations of Basicldent are discussed in Section 5. Note that the value of g, in Algorithm Encrypt
is independent of the message to be encrypted. Hence there is no need to recompute g, on subsequent
encryptions to the same public key ID.

Security. Next, we study the security of this basic scheme. The following theorem shows that
Basicldent is a semantically secure identity based encryption scheme (IND-ID-CPA) assuming BDH is
hard in groups generated by G.

Theorem 4.1. Suppose the hash functions Hi, Hy are random oracles. Then Basicldent is a semanti-
cally secure identity based encryption scheme (IND-ID-CPA) assuming BDH is hard in groups generated
by G. Concretely, suppose there is an IND-ID-CPA adversary A that has advantage €(k) against the
scheme Basicldent. Suppose A makes at most qz > 0 private key extraction queries and qy, > 0 hash
queries to Ho. Then there is an algorithm B that solves BDH in groups generated by G with advantage
at least:

2¢(k)
Ad kK> —Mm~2
vg,B( ) = e(1—|-qE)'QH2

Here e ~ 2.71 is the base of the natural logarithm. The running time of B is O(time(A)).

To prove the theorem we first define a related Public Key Encryption scheme (not an identity based
scheme), called BasicPub. BasicPub is described by three algorithms: keygen, encrypt, decrypt.
keygen: Given a security parameter k € Z™, the algorithm works as follows:

Step 1: Run G on input k to generate two prime order groups G1, G2 and a bilinear map € : G; xGy —
Ga. Let g be the order of G1,Gy. Choose a random generator P € Gj.
Step 2: Pick a random s € Z; and set Py, = sP. Pick a random Qp € G7.
Step 3: Choose a cryptographic hash function Hy : Go — {0,1}" for some n.
Step 4: The public key is (¢, G1, G2, é,n, P, Py, Qio, H2). The private key is dip = sQp € GJ.
encrypt: To encrypt M € {0,1}" choose a random 7 € Z; and set the ciphertext to be:

C = (rP, M ® H(g")) where g=2¢é(Qp,Ppup) € G5

decrypt: Let C = (U, V) be a ciphertext created using the public key (¢, G1, G2, é,n, P, Py, Qio, H2).
To decrypt C' using the private key d\, € G] compute:

|4 © H2(é(d||37 U)) =M
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This completes the description of BasicPub. We now prove Theorem 4.1 in two steps. We first show
that an IND-ID-CPA attack on Basicldent can be converted to a IND-CPA attack on BasicPub. This
step shows that private key extraction queries do not help the adversary. We then show that BasicPub
is IND-CPA secure if the BDH assumption holds.

Lemma 4.2. Let H; be a random oracle from {0,1}* to Gi. Let A be an IND-ID-CPA adversary that
has advantage €(k) against Basicldent. Suppose A makes at most gz > 0 private key extraction queries.
Then there is a IND-CPA adversary B that has advantage at least e(k)/e(1 + qr) against BasicPub. Its
running time is O(time(A)).

Proof. We show how to construct an IND-CPA adversary B that uses A to gain advantage €¢/e(1+qz)
against BasicPub. The game between the challenger and the adversary B starts with the challenger
first generating a random public key by running algorithm keygen of BasicPub. The result is a public
key Kpup = (¢,G1,Go,é,n, P, Py, Qip, He) and a private key dip = sQp. As usual, ¢ is the order of
G1,Ga. The challenger gives K,,,; to algorithm B. Algorithm B is supposed to output two messages
My and M; and expects to receive back the BasicPub encryption of M under K, where b € {0,1}.
Then algorithm B outputs its guess b’ € {0,1} for b.

Algorithm B works by interacting with A in an IND-ID-CPA game as follows (B simulates the challenger

for A):

Setup: Algorithm B gives A the Basicldent system parameters (q,G1,Go, é,n, P, Py, Hi, Ha). Here
q,G1,G2, €, n, P, Py, Hy are taken from K,,;, and Hp is a random oracle controlled by B as
described below.

Hi-queries: At any time algorithm A can query the random oracle Hi. To respond to these queries
algorithm B maintains a list of tuples (ID;, Q;,b;,¢;) as explained below. We refer to this list as the
H{“t. The list is initially empty. When A queries the oracle H; at a point ID; algorithm B responds
as follows:

1. If the query ID; already appears on the H {m in a tuple (ID;, Q;, b;, ¢;) then Algorithm B responds
2. Otherwise, B generates a random coin € {0,1} so that Pr[coin = 0] = § for some § that will be
determined later.
3. Algorithm B picks a random b € Z.
If coin = 0 compute @Q; = bP € G}. If coin = 1 compute Q; = bQp € GJ.
4. Algorithm B adds the tuple (ID;, Q;, b, coin) to the H!*! and responds to A with Hi(ID;) = Q;.
Note that either way ; is uniform in G} and is independent of A’s current view as required.

Phase 1: Let ID; be a private key extraction query issued by algorithm A. Algorithm B responds to
this query as follows:

1. Run the above algorithm for responding to Hi-queries to obtain a @; € G such that H;(ID;) = Q;.
Let (ID;, Q;, bi, coin;) be the corresponding tuple on the H!*!. If coin; = 1 then B reports failure
and terminates. The attack on BasicPub failed.

2. We know coin; = 0 and hence @Q; = b;P. Define d; = b;P,,», € G}. Observe that d; = sQ; and
therefore d; is the private key associated to the public key ID;. Give d; to algorithm A.

Challenge: Once algorithm A decides that Phase 1 is over it outputs a public key ID., and two
messages My, M1 on which it wishes to be challenged. Algorithm B responds as follows:
1. Algorithm B gives its challenger the messages My, M;. The challenger responds with a BasicPub
ciphertext C' = (U, V') such that C' is the encryption of M, for a random ¢ € {0,1}.
2. Next, B runs the algorithm for responding to H-queries to obtain a @) € G7 such that H(ID.;,) =
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Q. Let (IDe, Q, b, coin) be the corresponding tuple on the Hi!. If coin = 0 then B reports failure
and terminates. The attack on BasicPub failed.

3. We know coin = 1 and therefore @) = bQp. Recall that when C = (U,V) we have U € Gf7.
Set C' = (b~'U, V), where b~! is the inverse of b mod ¢q. Algorithm B responds to A with the
challenge ciphertext C’. Note that C’ is a proper Basicldent encryption of M, under the public key
ID.p as required. To see this first observe that, since H;(ID.,) = @, the private key corresponding
to IDgy, is dep, = sQ. Second, observe that

é(b_an dch) = é(b_an SQ) = é(Uv Sb_lQ) = é(U¢ SQID) = é(U> dID)-

Hence, the Basicldent decryption of C’ using d,, is the same as the BasicPub decryption of C' using
d'D-

Phase 2: Algorithm B responds to private key extraction queries as in Phase 1.
Guess: Eventually algorithm A outputs a guess ¢ for ¢. Algorithm B outputs ¢’ as its guess for c.

Claim: If algorithm B does not abort during the simulation then algorithm A’s view is identical to
its view in the real attack. Furthermore, if B does not abort then | Prfc = ¢/] — | > e. The probability
is over the random bits used by A, B and the challenger.

Proof of claim. The responses to Hi-queries are as in the real attack since each response is uniformly
and independently distributed in GJ. All responses to private key extraction queries are valid. Finally,
the challenge ciphertext C’ given to A is the Basicldent encryption of M, for some random ¢ € {0,1}.
Therefore, by definition of algorithm A we have that | Pr[c = ¢/] — | > e. O

To complete the proof of Lemma 4.2 it remains to calculate the probability that algorithm B aborts
during the simulation. Suppose A makes a total of gz private key extraction queries. Then the prob-
ability that B does not abort in phases 1 or 2 is §9¢. The probability that it does not abort during
the challenge step is 1 — §. Therefore, the probability that B does not abort during the simulation
is 992(1 — §). This value is maximized at dopr = 1 — 1/(ge + 1). Using dops, the probability that B
does not abort is at least 1/e(1+¢g). This shows that B’s advantage is at least €/e(1+qg) as required. O

The analysis used in the proof of Lemma 4.2 uses a similar technique to Coron’s analysis of the
Full Domain Hash signature scheme [9]. Next, we show that BasicPub is a semantically secure public
key system if the BDH assumption holds.

Lemma 4.3. Let Hy be a random oracle from Go to {0,1}". Let A be an IND-CPA adversary that has
advantage €(k) against BasicPub. Suppose A makes a total of qu, > 0 queries to Ha. Then there is an
algorithm B that solves the BDH problem for G with advantage at least 2¢(k)/qu, and a running time
O(time(A)).

Proof. Algorithm B is given as input the BDH parameters (g, G1, G2, é) produced by G and a
random instance (P, aP,bP,cP) = (P, P1, P, P3) of the BDH problem for these parameters, i.e. P is
random in G} and a,b, ¢ are random in Z; where ¢ is the order of G1,G2. Let D = é(P, P)%¢ € Gy be
the solution to this BDH problem. Algorithm B finds D by interacting with A as follows:

Setup: Algorithm B creates the BasicPub public key Ky, = (¢, G1, G2, é,n, P, Py, Qio, H2) by setting
Py = P1 and Qp = P». Here Hj is a random oracle controlled by B as described below. Algorithm

B gives A the BasicPub public key K,,;. Observe that the (unknown) private key associated to Kpy
iS dID == aQ|D == abP
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Hs-queries: At any time algorithm A may issue queries to the random oracle Hz. To respond to
these queries B maintains a list of tuples called the Hé“t. Each entry in the list is a tuple of the form
(X;, H;). Initially the list is empty. To respond to query X; algorithm B does the following:

1. If the query X; already appears on the HY*! in a tuple (X;, H;) then respond with Hy(X;) = H;.
2. Otherwise, B just picks a random string H; € {0,1}" and adds the tuple (X;, H;) to the HYst. Tt
responds to A with Hy(X;) = H;.

Challenge: Algorithm A outputs two messages My, M7 on which it wishes to be challenged. Al-
gorithm B picks a random string R € {0,1}" and defines C' to be the ciphertext C' = (Ps, R).
Algorithm B gives C' as the challenge to A. Observe that, by definition, the decryption of C' is
R @ Hy(é(P3,dp)) = R® Ha (D).

Guess: Algorithm A outputs its guess ¢’ € {0,1}. At this point B picks a random tuple (X;, H;) from
the H4*! and outputs X; as the solution to the given instance of BDH.

Algorithm B is simulating a real attack environment for algorithm A4 (it simulates the challenger and
the oracle for Hy). We show that algorithm B outputs the correct answer D with probability at least
2¢/qyu, as required. The proof is based on comparing A’s behavior in the simulation to its behavior in
a real IND-CPA attack game (against a real challenger and a real random oracle for Hs).

Let H be the event that algorithm A issues a query for Hy(D) at some point during the simulation
above (this implies that at the end of the simulation D appears in some tuple on the H é“t). We show
that Pr[H] > 2e. This will prove that algorithm B outputs D with probability at least 2¢/qy,. We
also study event H in the real attack game, namely the event that A issues a query for Ho(D) when
communicating with a real challenger and a real random oracle for Ho.

Claim 1:  Pr[H] in the simulation above is equal to Pr[H] in the real attack.

Proof of claim. Let H; be the event that A makes a query for Ha(D) in one of its first ¢ queries to
the Hy oracle. We prove by induction on ¢ that Pr[H,] in the real attack is equal to Pr[H,] in the
simulation for all £ > 0. Clearly Pr[Hy] = 0 in both the simulation and in the real attack. Now suppose
that for some ¢ > 0 we have that Pr[H,_1] in the simulation is equal to Pr[H,_1] in the real attack.
We show that the same holds for H,. We know that:

Pr[Hy| = Pr[He | Ho—1] Pr[Ho—1] + Pr[H | = He—1] Pr[—=He—1] (1)
= Pr[Ho—1] + Pr[H¢| = Ho—1] Pr[-Ho_1]

We argue that Pr[H,|—Hy—1] in the simulation is equal to Pr[H,| —H,_1] in the real attack. To see
this observe that as long as A does not issue a query for Ho(D) its view during the simulation is
identical to its view in the real attack (against a real challenger and a real random oracle for Hy).
Indeed, the public-key and the challenge are distributed as in the real attack. Similarly, all responses
to Ha-queries are uniform and independent in {0,1}". Therefore, Pr[H,| —=H,_1] in the simulation is
equal to Pr[Hy | —H,_1] in the real attack. It follows by (1) and the inductive hypothesis that Pr[H/]
in the real attack is equal to Pr[H,] in the simulation. By induction on ¢ we obtain that Pr[H] in the
real attack is equal to Pr[H] in the simulation. O

Claim 2:  In the real attack we have Pr[H] > 2e.

Proof of claim. In the real attack, if A never issues a query for Ha(D) then the decryption of C
is independent of A’s view (since Hy(D) is independent of A’s view). Therefore, in the real attack
Prlc = ¢ | =H] = 1/2. By definition of A, we know that in the real attack |Pr[c = ¢/] — 1/2] > e.
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We show that these two facts imply that Pr[H] > 2e. To do so we first derive simple upper and lower
bounds on Prec = ¢/]:

Prlc=c] = Pr[c=|-H]Pr[~H]+ Pr[c = '|H] Pr[H] <
1 1 1
< Prl[c = |=H] Pr[~H] + Pr[H] = 5 Pr[—H] + Pr[H| = 573 Pr[H]
Prlc=c] > Prlc=|-H]Pr[-H] = % — %Pr[H]
It follows that e < |Pr[c = ¢/] — 1/2| < $ Pr[H]. Therefore, in the real attack Pr[H] > 2. O

To complete the proof of Lemma 4.3 observe that by Claims 1 and 2 we know that Pr[H] > 2¢ in
the simulation above. Hence, at the end of the simulation, D appears in some tuple on the H éiSt with
probability at least 2e. It follows that B produces the correct answer with probability at least 2¢/q,
as required. O

We note that one can slightly vary the reduction in the proof above to obtain different bounds.
For example, in the ‘Guess’ step above one can avoid having to pick a random element from the H éiSt
by using the random self reduction of the BDH problem. This requires running algorithm .4 multiple
times (as in Theorem 7 of [42]). The success probability for solving the given BDH problem increases
at the cost of also increasing the running time.

Proof of Theorem 4.1. The theorem follows directly from Lemma 4.2 and Lemma 4.3. Composing
both reductions shows that an IND-ID-CPA adversary on Basicldent with advantage e(k) gives a BDH
algorithm for G with advantage at least 2e(k)/e(1 + qx)qu,, as required. O

4.2 Identity-Based Encryption with Chosen Ciphertext Security

We use a technique due to Fujisaki-Okamoto [16] to convert the Basicldent scheme of the previous
section into a chosen ciphertext secure IBE system (in the sense of Section 2) in the random oracle
model. Let £ be a probabilistic public key encryption scheme. We denote by &,,(M; ) the encryption
of M using the random bits r under the public key pk. Fujisaki-Okamoto define the hybrid scheme £
as:

ENM) = (&nlosHy(o,M)), Hio)® M)

Here o is generated at random and Hs, Hy are cryptographic hash functions. Fujisaki-Okamoto show
that if £ is a one-way encryption scheme then £ is a chosen ciphertext secure system (IND-CCA) in the
random oracle model (assuming &, satisfies some natural constraints). We note that semantic security

implies one-way encryption and hence the Fujisaki-Okamoto result also applies if £ is semantically
secure (IND-CPA).

We apply the Fujisaki-Okamoto transformation to Basicldent and show that the resulting IBE
system is IND-ID-CCA secure. We obtain the following IBE scheme which we call Fullldent. Recall that
n is the length of the message to be encrypted.

Setup: As in the Basicldent scheme. In addition, we pick a hash function Hs : {0,1}" x {0,1}" — Z7,
and a hash function Hy : {0,1}" — {0,1}".

Extract: As in the Basicldent scheme.
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Encrypt: To encrypt M € {0,1}" under the public key ID do the following: (1) compute Q, =
H,(ID) € G7, (2) choose a random o € {0,1}", (3) set r = Hs(o, M), and (4) set the ciphertext to be

C = <TP7 g @ HZ(grD)v M @ H4(U)> Where gID = é(QID7Pp’U,b) S GQ

Decrypt: Let C = (U, V,W) be a ciphertext encrypted using the public key ID. If U ¢ G7 reject the
ciphertext. To decrypt C' using the private key d\, € G do:

1. Compute V & Ha(é(dp,U)) =o.

2. Compute W @ Hy(o) = M.

3. Set r = Hs(o, M). Test that U = rP. If not, reject the ciphertext.
4. Output M as the decryption of C.

This completes the description of Fullldent. Note that M is encrypted as W = M @& Hy (o). This can be
replaced by W = Epy,(,)(M) where E is a semantically secure symmetric encryption scheme (see [16]).

Security. The following theorem shows that Fullldent is a chosen ciphertext secure IBE (i.e. IND-ID-
CCA), assuming BDH is hard in groups generated by G.

Theorem 4.4. Let the hash functions Hi, Ho, Hs, Hy be random oracles. Then Fullldent is a chosen
ciphertext secure IBE (IND-ID-CCA) assuming BDH is hard in groups generated by G.

Concretely, suppose there is an IND-ID-CCA adversary A that has advantage €(k) against the scheme
Fullldent and A runs in time at most t(k). Suppose A makes at most qg extraction queries, at most
qp decryption queries, and at most qu,, qu,,qu, queries to the hash functions Ho, Hs, Hy respectively.
Then there is a BDH algorithm B for G with running time t1(k) where:

k
Ad'Ug7B(k') > 2F0ad'u(e(1+eq(E)+qD)7 ry > QHgs QD)/QH2
tl(k) < FOtime (t(k‘), qHy, QHg)
where the functions FOme and FOuq, are defined in Theorem 4.5.
The proof of Theorem 4.4 is based on the following result of Fujisaki and Okamoto (Theorem 14
in [16]). Let BasicPub™ be the result of applying the Fujisaki-Okamoto transformation to BasicPub.

Theorem 4.5 (Fujisaki-Okamoto). Suppose A is an IND-CCA adversary that achieves advantage
e(k) when attacking BasicPub™. Suppose A has running time t(k), makes at most qp decryption
queries, and makes at most qp,, qu, queries to the hash functions Hsz, Hy respectively. Then there is an
IND-CPA adversary B against BasicPub with running time t1(k) and advantage €;(k) where

(k) ﬁ [(e(k) + 1)(1 — 2/g) — 1]

Here q is the size of the groups G1,Go and n is the length of o.

v

FOadv(G(k)7 QH47 QH37 QD) =

In fact, Fujisaki-Okamoto prove a stronger result: Under the hypothesis of Theorem 4.5, BasicPub”Y
would not even be a one-way encryption scheme. For our purposes the result in Theorem 4.5 is sufficient.
To prove Theorem 4.4 we also need the following lemma to translate between an IND-ID-CCA chosen
ciphertext attack on Fullldent and an IND-CCA chosen ciphertext attack on BasicPub™.

Lemma 4.6. Let A be an IND-ID-CCA adversary that has advantage (k) against Fullldent. Suppose A
makes at most qg > 0 private key extraction queries and at most qp decryption queries. Then there is
an IND-CCA adversary B that has advantage at least % against BasicPub™. Its running time
is O(time(A)).
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Proof. We construct an IND-CCA adversary B that uses A to gain advantage €/e(1 + q5 + qp)
against BasicPub™. The game between the challenger and the adversary B starts with the challenger
first generating a random public key by running algorithm keygen of BasicPub™. The result is a public
key Kpup = (¢, G1,Go,€é,n, P, Pyyp, Qio, Ho, Hs, Hy) and a private key dip = sQpp. The challenger gives
Kpup to algorithm B.

Algorithm B mounts an IND-CCA attack on the key K, using the help of algorithm .A. Algorithm B
interacts with 4 as follows:

Setup: Same as in Lemma 4.2 (with Hs, H, included in the system parameters given to A).
Hi-queries: These queries are handled as in Lemma 4.2.
Phase 1: Private key queries. Handled as in Lemma 4.2.

Phase 1: Decryption queries. Let (ID;,C;) be a decryption query issued by algorithm A. Let

C; = (U;, Vi, W;). Algorithm B responds to this query as follows:

1. Run the above algorithm for responding to Hi-queries to obtain a @); € G such that H1(ID;) = Q.
Let (ID;, Q;, bi, coin;) be the corresponding tuple on the Hit,

2. Suppose coin; = 0. In this case run the algorithm for responding to private key queries to obtain
the private key for the public key ID;. Then use the private key to respond to the decryption
query.

3. Suppose coin; = 1. Then Q; = b;Qp.

— Recall that U; € Gy. Set C] = (b;U;, Vi, W;). Let d; = sQ; be the (unknown) Fullldent
private key corresponding to ID;. Then the Fullldent decryption of C; using d; is the same as
the BasicPub™ decryption of C! using dip. To see this observe that:

e(biU;, dip) = é(b;U;, sQip) = é(Us, sbiQip) = €(Us, 5Q;) = (Ui, ;).

— Relay the decryption query (C}) to the challenger and relay the challenger’s response back to A.

Challenge: Once algorithm A decides that Phase 1 is over it outputs a public key ID., and two
messages Mg, M; on which it wishes to be challenged. Algorithm B responds as follows:

1. Algorithm B gives the challenger My, M; as the messages that it wishes to be challenged on. The
challenger responds with a BasicPub™ ciphertext C' = (U, V,W) such that C is the encryption of
M, for a random ¢ € {0,1}.

2. Next, B runs the algorithm for responding to H-queries to obtain a ) € G7 such that H;(ID.;,) =
Q. Let (IDp,, Q, b, coin) be the corresponding tuple on the H!*. If coin = 0 then B reports failure
and terminates. The attack on BasicPub™ failed.

3. We know coin = 1 and therefore Q = bQp. Recall that when C' = (U,V,W) we have U € Gf7.
Set C" = (b=1U, V, W), where b~! is the inverse of b mod g. Algorithm B responds to A with the
challenge C’. Note that, as in the proof of Lemma 4.2, C’ is a Fullldent encryption of M, under
the public key ID.; as required.

Phase 2: Private key queries. Algorithm B responds to private key extraction queries in the same
way it did in Phase 1.

Phase 2: Decryption queries. Algorithm B responds to decryption queries in the same way it
did in Phase 1. However, if the resulting decryption query relayed to the challenger is equal to the
challenge ciphertext C' = (U, V, W) then B reports failure and terminates. The attack on BasicPub’V
failed.
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Guess: Eventually algorithm A outputs a guess ¢ for ¢. Algorithm B outputs ¢’ as its guess for c.

Claim: If algorithm B does not abort during the simulation then algorithm A’s view is identical to
its view in the real attack. Furthermore, if B does not abort then | Prfc = ¢/] — 3| > e. The probability
is over the random bits used by A, B and the challenger.

Proof of claim. The responses to Hi-queries are as in the real attack since each response is uniformly
and independently distributed in Gj. All responses to private key extraction queries and decryp-
tion queries are valid. Finally, the challenge ciphertext C’ given to A is the Fullldent encryption of M,
for some random ¢ € {0,1}. Therefore, by definition of algorithm A we have that | Pr[c = ¢/]— | > e. O

It remains to bound the probability that algorithm B aborts during the simulation. The algorithm
could abort for three reasons: (1) a bad private key query from A during phases 1 or 2, (2) A chooses
a bad ID., to be challenged on, or (3) a bad decryption query from A during phase 2. We define three
corresponding events:

&1 is the event that A issues a private key query during phase 1 or 2 that causes algorithm B to abort.

&, is the event that A choose a public key 1D, to be challenged on that causes algorithm B to abort.

&s is the event that during phase 2 of the simulation Algorithm A issues a decryption query (ID;, C;)
so that the decryption query that B would relay to the BasicPub™ challenger is equal to C. Recall
that C' = (U, V, W) is the challenge ciphertext from the BasicPub™ challenger.

Claim: Pr[=& A =& A —&3) > §9EHID(1 — §)

Proof of claim. We prove the claim by induction on the maximum number of queries ¢z + qp made
by the adversary. Let i = ¢u + gp and let £%% be the event that £ V & happens after A issues at
most i queries. Similarly, let £ be the event that & V & happens for the first time when A issues
the i’th query. We prove by induction on 4 that Pr[-&%¢ | =&] > 6°. The claim follows because
Pr[—|81 A =€ A —\83] = Pr[—|51 A —E3 ‘ _'52] Pr[—\gg] > Pr[—m‘,'l A —E3 ‘ —|52](1 — 5)

For i = 0 the claim is trivial since by definition Pr[-£%+?] = 1. Now, suppose the claim holds for
i — 1. Then

Pr[ﬁgo...i | _‘(‘:2] — Pr[_‘go...i ’ ﬂ(c:(]...ifl A _‘52] Pr[ﬁgo.‘.ifl ‘ _‘52}
— Pr[—|€i ’ _‘80...2'71 A _‘52] Pr[ﬁgo.‘.ifl ‘ _\82] > Pr[—é’i ‘ _\gO...ifl A _|€2]5i71

Hence, it suffices to bound ¢; = Pr[-&% | =%+~ A =&)]. In other words, we bound the probability
that the i’th query does not cause £° to happen given that the first i — 1 queries did not, and given
that & does not occur. Consider the i’th query issued by A during the simulation. The query is either
a private key query for (ID;) or a decryption query for (ID;, C;) where C; = (U;, V;, W;). If the query is
a decryption query we assume it takes place during phase 2 since otherwise it has no effect on 3.

Let H;(ID;) = Q; and let (ID;, Q;, b;, coin;) be the corresponding tuple on the H**. Recall that
when coin; = 0 the query cannot cause event £; to happen. Similarly, when coin; = 0 the query cannot
cause event & to happen since in this case B does not relay a decryption query to the BasicPub™
challenger. We use these facts to bound ¢;. There are four cases to consider. In the first three cases
we assume |D; is not equal to the public key ID., on which A is being challenged.

Case 1. The i’th query is the first time A issues a query containing ID;. In this case Pr[coin; = 0] = §
and hence ¢; > 6.

Case 2. The public key ID; appeared in a previous private key query. Since by assumption this earlier
private key query did not cause £%+*~! to happen we know that coin; = 0. Hence, we have ¢; = 1.
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Case 3. The public key ID; appeared in a previous decryption query. Since by assumption this earlier
decryption query did not cause event £%“~1 to happen we have that either coin; = 0 or coin; is
independent of A’s current view. Either way we have that ¢; > §.

Case 4. The public key ID; is equal to the public key ID.; on which A is being challenged. Then, by
definition, the i’th query cannot be a private key query. Therefore, it must be a decryption query
(IDj, C;). Furthermore, since & did not happen we know that coin; = 1 and hence B will relay a
decryption query C/ to the BasicPub™ challenger. Let C’ be the challenge ciphertext given to A.
By definition we know that C; # C’. It follows that C] # C. Therefore this query cannot cause
event &3 to happen. Hence, in this case ¢; = 1.

To summarize, we see that whatever the i’th query is, we have that ¢; > §. Therefore, we have that
Pr[—£%+ | =&] > 6 as required. The claim now follows by setting i = ¢z + ¢p. O

To conclude the proof of Lemma 4.6 it remains to optimize the choice of §. Since Pr[—=&1 A =& A =E3] >
§92+4p (1—4§) the success probability is maximized at dopt = 1—1/(gr+¢qp+1). Using dopt, the probabil-
ity that B does not abort is at least o . This shows that B’s advantage is at least €/e(14+¢z+¢qp)

1
] 1+9r+49p)
as required. I

Proof of Theorem 4.4. By Lemma 4.6 an IND-ID-CCA adversary on Fullldent implies an IND-CCA
adversary on BasicPub™. By Theorem 4.5 an IND-CCA adversary on BasicPub™ implies an IND-CPA
adversary on BasicPub. By Lemma 4.3 an IND-CPA adversary on BasicPub implies an algorithm for
BDH. Composing all these reductions gives the required bounds. (Il

4.3 Relaxing the hashing requirements

Recall that the IBE system of Section 4.2 uses a hash function H; : {0,1}* — Gj. The concrete IBE
system presented in the next section uses 1 as a subgroup of the group of points on an elliptic curve.
In practice, it is difficult to build hash functions that hash directly onto such groups. We therefore
show how to relax the requirement of hashing directly onto G]. Rather than hash onto G} we hash
onto some set A C {0,1}* and then use a deterministic encoding function to map A onto G7.
Admissible encodings: Let G; be a group and let A € {0,1}" be a finite set. We say that an
encoding function L : A — G7 is admissible if it satisfies the following properties:

1. Computable: There is an efficient deterministic algorithm to compute L(z) for any x € A.

2. (-to-1: For any y € G the preimage of y under L has size exactly £. In other words, |L~1(y)| = ¢
for all y € G}. Note that this implies that |A| = ¢ - |Gj|.

3. Samplable: There is an efficient randomized algorithm Lg such that Lg(y) induces a uniform
distribution on L~(y) for any y € G}. In other words, Lg(y) is a uniform random element in
L7 (y).

We slightly modify Fullldent to obtain an IND-ID-CCA secure IBE system where Hj is replaced by a

hash function into some set A. Since the change is so minor we refer to this new scheme as Fullldent’:

Setup: As in the Fullldent scheme. The only difference is that Hi is replaced by a hash function
H{ : {0,1}* — A. The system parameters also include a description of an admissible encoding
function L : A — G7.
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Extract, Encrypt: As in the Fullldent scheme. The only difference is that in Step 1 these algorithms
compute Qp = L(H{(ID)) € G7.

Decrypt: As in the Fullldent scheme.

This completes the description of Fullldent’. The following theorem shows that Fullldent’ is a chosen
ciphertext secure IBE (i.e. IND-ID-CCA), assuming Fullldent is.

Theorem 4.7. Let A be an IND-ID-CCA adversary on Fullldent’ that achieves advantage (k). Suppose

A makes at most qy, queries to the hash function H{. Then there is an IND-ID-CCA adversary B on
Fullldent that achieves the same advantage e(k) and time(B) = time(A) + qu, - time(Lg)

Proof Sketch. Algorithm B attacks Fullldent by running algorithm A. It relays all decryption
queries, extraction queries, and hash queries from A directly to the challenger and relays the challenger’s
response back to A. It only behaves differently when A issues a hash query to H{. Recall that B only
has access to a hash function Hy : {0,1}* — G7. To respond to Hj queries algorithm B maintains a list
of tuples (ID;,y;) as explained below. We refer to this list as the (H Dlist. The list is initially empty.
When A queries the oracle H{ at a point ID; algorithm B responds as follows:

1. If the query ID; already appears on the (H/)"* in a tuple (ID;,¥;), respond with H/(ID;) = y; € A.

2. Otherwise, B issues a query for Hy(ID;). Say, H1(ID;) = a € G7.

3. B runs the sampling algorithm Lg(a) to generate a random element y € L™ ().

4. B adds the tuple (ID;,y) to the (H/)"* and responds to A with H{(ID;) = y € A. Note that y is
uniformly distributed in A as required since « is uniformly distributed in G} and L is an ¢-to-1 map.

Algorithm B’s responses to all of A’s queries, including H| queries, are identical to A’s view in the real
attack. Hence, B will have the same advantage €(k) in winning the game with the challenger. O

5 A concrete IBE system using the Weil pairing

In this section we use Fullldent’ to describe a concrete IBE system based on the Weil pairing. We first
review some properties of the pairing (see the Appendix for more details).

5.1 Properties of the Weil Pairing

Let p be a prime satisfying p = 2 mod 3 and let ¢ > 3 be some prime factor of p+ 1. Let E be the
elliptic curve defined by the equation y? = 23 + 1 over F,. We state a few elementary facts about this
curve E (see [43] for more information). From here on we let E(F,-) denote the group of points on E
defined over F,-.

Fact 1: Since 23 + 1 is a permutation on [F,, it follows that the group E(IF,) contains p + 1 points. We
let O denote the point at infinity. Let P € E(F,) be a point of order ¢ and let G be the subgroup
of points generated by P.

Fact 2: For any yo € F, there is a unique point (29,y0) on E(F,), namely zo = (y3 — 1)'/3 € F,.
Hence, if (z,y) is a random non-zero point on E(F,) then y is uniform in F,. We use this property
to build a simple admissible encoding function.

Fact 3: Let 1 # ¢ € Fj2 be a solution of #* —1 = 0 in F2. Then the map ¢(z,y) = ((z,y) is an
automorphism of the group of points on the curve E. Note that for any point Q = (z,y) € E(F))
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we have that ¢(Q) € E(F,2), but ¢(Q) ¢ E(F,). Hence, Q € E(F,) is linearly independent of
$(Q) € E(Fy2).

Fact 4: Since the points P € G; and ¢(P) are linearly independent they generate a group isomorphic
to Zy x Zg. We denote this group of points by E[q].

Let Go be the subgroup of IFZQ of order q. The Weil pairing on the curve E(F,2) is a mapping
e : Elg] x Elq] — G2 defined in the Appendix. For any Q,R € E(F,) the Weil pairing satisfies
e(Q,R) = 1. In other words, the Weil pairing is degenerate on E(IF,), and hence degenerate on the
group G1. To get a non-degenerate map we define the modified Weil pairing é : G; x Gy — G2 as
follows:

é(P,Q) =e(P,9(Q))
The modified Weil pairing satisfies the following properties:

1. Bilinear: For all P,Q € G; and for all a,b € Z we have é(aP,bQ) = é(P, Q).
2. Non-degenerate: If P is a generator of Gy then é(P, P) € IFZQ is a generator of Go.

3. Computable: Given P, @ € G there is an efficient algorithm, due to Miller, to compute é(P, Q) € Go.
This algorithm is described in the Appendix. Its running time is comparable to exponentiation in
F,.

Joux and Nguyen [28] point out that although the Computational Diffie-Hellman problem (CDH)

appears to be hard in the group Gi, the Decisional Diffie-Hellman problem (DDH) is easy in G; (as

discussed in Section 3).

BDH Parameter Generator G;: Given a security parameter 2 < k € Z the BDH parameter
generator picks a random k-bit prime ¢ and finds the smallest prime p such that (1) p = 2 mod 3, (2)
q divides p + 1, and (3) ¢? does not divide p + 1. We write p = £g + 1. The group G; is the subgroup
of order ¢ of the group of points on the curve y? = 2% + 1 over Fp,. The group G2 is the subgroup of
order q of IFZQ. The bilinear map é : G; x Gy — Go is the modified Weil pairing defined above.

The BDH parameter generator G; is believed to satisfy the BDH assumption asymptotically. How-
ever, there is still the question of what values of p and ¢ can be used in practice to make the BDH
problem sufficiently hard. At the very least, we must ensure that the discrete log problem in G; is
sufficiently hard. As pointed out in Section 3 the discrete log problem in G is efficiently reducible
to discrete log in Gg (see [32, 17]). Hence, computing discrete log in F*, is sufficient for computing
discrete log in G1. In practice, for proper security of discrete log in F ;2 one often uses primes p that
are at least 512-bits long (so that the group size is at least 1024-bits long). Consequently, one should
not use this BDH parameter generator with primes p that are less than 512-bits long.

5.2 An admissible encoding function: MapToPoint

Let G1,Go be two groups generated by G; as defined above. Recall that the IBE system of Section
4.2 uses a hash function H; : {0,1}* — Gj. By Theorem 4.7, it suffices to have a hash function
H, : {0,1}* — A for some set A, and an admissible encoding function L : A — G7. In what follows
the set A will be IF,,, and the admissible encoding function L will be called MapToPoint.

Let p be a prime satisfying p = 2 mod 3 and p = £q—1 for some prime g > 3. We require that ¢ does
not divide ¢ (i.e. that ¢ does not divide p+1). Let E be the elliptic curve y? = 23+ 1 over Fp. Let Gy
be the subgroup of points on E of order gq. Suppose we already have a hash function H; : {0,1}* — F),.
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Algorithm MapToPoint works as follows on input yg € Fp:
1. Compute g = (y2 — 1)'/3 = (y2 — 1)~1/3 ¢ T,

2. Let Q = (z0,y0) € E(F,) and set Qp = 4Q € G.

3. Output MapToPoint(yy) = Q-

This completes the description of MapToPoint.

We note that there are £ — 1 values of yo € F,, for which ¢Q = ¢(xg,y0) = O (these are the non-O
points of order dividing ¢). Let B C F,, be the set of these yg. When H;(ID) is one of these £ — 1 values
Qo is the identity element of G;. It is extremely unlikely for H;(ID) to hit one of these points — the
probability is 1/q < 1/2*. Hence, for simplicity we say that H;(ID) only outputs elements in F, \ B,
ie. Hy:{0,1}* — F, \ B. Algorithm MapToPoint can be easily extended to handle the values yg € B
by hashing ID multiple times using different hash functions.

Lemma 5.1. MapToPoint : [F, \ B — GJ is an admissible encoding function.

Proof. The map is clearly computable and is a £ — to — 1 mapping. It remains to show that L
is samplable. Let P be a generator of E(F,). Given a Q € G} the sampling algorithm Lg does the
following: (1) pick a random b € {0,...,¢ — 1}, (2) compute Q' = £~!-Q + bgP = (x,y), and (3)
output L5(Q) =y € F,. Here £~ is the inverse of ¢ in Z;. This algorithm outputs a random element
from the ¢ elements in MapToPoint™1(Q) as required. O

5.3 A concrete IBE system

Using Fullldent’ from Section 4.3 with the BDH parameter generator G; and the admissible encoding
function MapToPoint we obtain a concrete IBE system. Note that in this system, H; is a hash function
from {0,1}* to F,, (where p is the finite field output by Gi). The security of the system follows directly
from Theorem 4.4 and Theorem 4.7. We summarize this in the following corollary.

Corollary 5.2. The IBE system Fullldent’ using the BDH parameter generator Gy and the admissible
encoding MapToPoint is a chosen ciphertext secure IBE (i.e. IND-ID-CCA in the random oracle model)
assuming G1 satisfies the BDH assumption.

Performance. Algorithms Setup and Extract are very simple. At the heart of both algorithms is a
standard multiplication on the curve E(FF,). Algorithm Encrypt requires that the encryptor compute the
Weil pairing of Qp and P,,;. Note that this computation is independent of the message to be encrypted,
and hence can be done once and for all. Once g, is computed the performance of the system is almost
identical to standard ElGamal encryption. Decryption is a single Weil pairing computation. We note
that the ciphertext length of Basicldent using Gy is the same as in regular ElGamal encryption in F,,.

6 Extensions and Observations

Tate pairing and other curves. Our IBE system works with any efficiently computable bilinear
pairing € : G; X G; — Go between two groups Gi, Go as long as the BDH assumption holds. Many
different curves, or more generally Abelian varieties, are believed to give rise to such maps. For
example, one could use the curve y?> = z3 + x over F, with p = 3 mod 4 and its endomorphism

¢ : (z,y) — (—z,iy) where i = —1. As another example, Galbraith [18] suggests using supersingular
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elliptic curves over a field of small characteristic to reduce the ciphertext size in our system. More
general Abelian varieties are proposed by Rubin and Silverberg [39]. We note that both encryption
and decryption in Fullldent can be made faster by using the Tate pairing on elliptic curves rather
than the Weil pairing [19, 1].

Asymmetric pairings. Our IBE system can use slightly more general bilinear maps, namely maps of
the form é : Gg X G; — Gg where Gg, G1, G2 are three groups of prime order ¢q. Using the notation of
Section 4.1 the only change to Basicldent is that we take P and P,,;, as elements in Go and let H; be
a hash function H; : {0,1}* — Gj. Everything else remains the same. However, to make the proof
of security go through (Lemma 4.2 in particular) we need a different complexity assumption which
we call the co-BDH assumption: given random P,aP,bP € Gy and @, aQ, cQ € G1 no polynomial
time algorithm can compute é(P, Q)% with non-negligible probability. If one is willing to accept this
assumption then we can avoid using supersingular curves and instead use elliptic curves over F,, p > 3
proposed by Miyaji et al. [35]. Curves E/F,, in this family are not supersingular and have the property
that if ¢ divides [E(F})| then E[q] C E(Fys) (recall that E[q] is the group containing all point in E of
order dividing ¢). One way to use these curves is to set G to be a cyclic subgroup of E(F,) of order
q and Gy to be a different cyclic subgroup of E(F,s) of the same order q. The standard Weil or Tate
pairings on Go x G1 can be used as the bilinear map é. Note that hashing public keys onto G; C E(IF,)
is easily done. Alternatively, to reduce the ciphertext size (which contains an element from Gg) one
could take Gg as a subgroup of order ¢ of E(FF,) and G as a different subgroup of E(FF,s) of the same
order. The question is how to hash public keys into G1. To do so, let tr : E(F,6) — E(F,) be the
trace map on the curve and define G; to be the subgroup of F[g| containing all points P whose trace
is O, i.e., tr(P) = O. Then given a hash function H : {0,1}* — E]gq] we can hash a public key ID
into Gy by computing: H;(ID) = 6H(ID) — tr(H(ID)) € G;. Finally, we note that by modifying the
security proof appropriately one can take G; = F[q] (a non-cyclic group) and then avoid computing
traces while hashing into G; (see also [18]).

Distributed PKG. In the standard use of an IBE in an e-mail system the master-key stored at the PKG
must be protected in the same way that the private key of a CA is protected. One way of protecting
this key is by distributing it among different sites using techniques of threshold cryptography [20].
Our IBE system supports this in a very efficient and robust way. Recall that the master-key is some
s € Z;. in order to generate a private key the PKG computes @Qpriv = sQp, where Qp is derived
from the user’s public key ID. This can easily be distributed in a t-out-of-n fashion by giving each
of the n PKGs one share s; of a Shamir secret shar(ilglg of s mod q. When generating a private key

(2

cach of the ¢ chosen PKGs simply responds with @, = siQp. The user can then construct Qpriv

as Qpriv = )\Z-Qg?iv where the \;’s are the appropriate Lagrange coefficients.

Furthermore, it is easy to make this scheme robust against dishonest PKGs using the fact that DDH
is easy in 1. During setup each of the n PKGs publishes P]Ei)b = s;P. During a key generation
request the user can verify that the response from the ¢’th PKG is valid by testing that:

é(Q](:?")zw P) = é(QlDa P;S'Z)b)

Thus, a misbehaving PKG will be immediately caught. There is no need for zero-knowledge proofs
as in regular robust threshold schemes [21]. The PKG’s master-key can be generated in a distributed
fashion using the techniques of [22].

Note that a distributed master-key also enables threshold decryption on a per-message basis, without
any need to derive the corresponding decryption key. For example, threshold decryption of Basicldent
ciphertext (U, V) is straightforward if each PKG responds with é(s;Qp, U).
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Working in subgroups. The performance of our IBE system (Section 5) can be improved if we work
in a small subgroup of the curve. For example, choose a 1024-bit prime p = 2 mod 3 with p = aqg—1
for some 160-bit prime ¢q. The point P is then chosen to be a point of order ¢. Each public key ID is
converted to a group point by hashing ID to a point @ on the curve and then multiplying the point
by a. The system is secure if the BDH assumption holds in the group generated by P. The advantage
is that the Weil computation is done on points of small order, and hence is much faster.

IBE implies signatures. Moni Naor has observed that an IBE scheme can be immediately converted
into a public key signature scheme. The intuition is as follows. The private key for the signature
scheme is the master key for the IBE scheme. The public key for the signature scheme is the global
system parameters for the IBE scheme. The signature on a message M is the IBE decryption key
for ID = M. To verify a signature, choose a random message M’, encrypt M’ using the public key
ID = M, and then attempt to decrypt using the given signature on M as the decryption key. If the
IBE scheme is IND-ID-CCA, then the signature scheme is existentially unforgeable against a chosen
message attack. Note that, unlike most signature schemes, the signature verification algorithm here is
randomized. This shows that secure IBE schemes incorporate both public key encryption and digital
signatures. We note that the signature scheme derived from our IBE system has some interesting
properties [6].

7 Escrow ElGamal encryption

In this section we show that the Weil pairing enables us to add a global escrow capability to the
ElGamal encryption system. A single escrow key enables the decryption of ciphertexts encrypted
under any public key. Paillier and Yung have shown how to add a global escrow capability to the
Paillier encryption system [36]. Our ElGamal escrow system works as follows:
Setup: Let G be some BDH parameter generator. Given a security parameter k € Z™, the algorithm
works as follows:
Step 1: Run G on input k to generate a prime ¢, two groups Gi, Gy of order ¢, and an admissible
bilinear map é : G; x G; — Go. Choose a random generator P of Gj.
Step 2: Pick a random s € Z; and set @ = sP.
Step 3: Choose a cryptographic hash function H : Go — {0,1}".
The message space is M = {0, 1}". The ciphertext space is C = Gy x {0,1}". The system parameters
are params = (¢, G1, Gg, é,n, P,Q, H). The escrow key is s € Zj.
keygen: A user generates a public/private key pair for herself by picking a random x € Z; and
computing P, = xP € G1. Her private key is z, her public key is Ppys.

Encrypt: To encrypt M € {0,1}" under the public key P,,; do the following: (1) pick a random
7 € Zy, and (2) set the ciphertext to be:

C= (P, M®H(g")) where g=¢é(Ppu, Q)< Go

Decrypt: Let C = (U,V) be a ciphertext encrypted using Ppy,;. Then U € G;. To decrypt C' using
the private key x do:
Ve HEUz2Q) =M

Escrow-decrypt: To decrypt C' = (U, V) using the escrow key s do:
Ve H(é(Ua SPpub)) =M
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A standard argument shows that assuming that BDH is hard for groups generated by G the system
has semantic security in the random oracle model (recall that since DDH is easy we cannot prove
semantic security based on DDH). Yet, the escrow agent can decrypt any ciphertext encrypted using
any user’s public key. The decryption capability of the escrow agent can be distributed using the PKG
distribution techniques described in Section 6.

Using a similar hardness assumption, Verheul [46] described an ElGamal encryption system with
non-global escrow. Each user constructs a public key with two corresponding private keys, and gives
one of the private keys to the trusted third party. The trusted third party must maintain a database
of all private keys given to it by the various users.

8 Summary and open problems

We defined chosen ciphertext security for identity-based systems and proposed a fully functional IBE
system. The system has chosen ciphertext security in the random oracle model assuming BDH, a
natural analogue of the computational Diffie-Hellman problem. The BDH assumption deserves further
study considering the powerful cryptosystems derived from it. For example, it could be interesting to
see whether the techniques of [30] can be used to prove that the BDH assumption is equivalent to the
discrete log assumption on the curve for certain primes p.

Cocks [8] recently proposed another IBE system whose security is based on the difficulty of distin-
guishing quadratic residues from non-residues in the ring Z/NZ where N is an RSA modulus (i.e., a
product of two large primes). Cocks’ system is somewhat harder to use in practice that the IBE system
in this paper. Cocks’ system uses bit-by-bit encryption and consequently outputs long ciphertexts.
Also, encryption/decryption is a bit slower than the system described in this paper. Nevertheless, it is
encouraging to see that IBE systems can be built using very different complexity assumptions.

It is an open problem to build chosen ciphertext secure identity based systems that are secure in
the standard computation model (rather than the random oracle model). One might hope to use the
techniques of Cramer-Shoup [10] to provide chosen ciphertext security based on DDH. Unfortunately, as
mentioned in Section 3, the DDH assumption is false in the group of points on the curve E. However,
simple variants of DDH do seem to hold. In particular, the following two distributions appear to
be computationally indistinguishable: (P, aP,bP, cP,abcP) and (P,aP,bP,cP,rP) where a,b,c,r are
random in Z,. We refer to this assumption as BDDH. A chosen ciphertext secure identity-based system
strictly based on BDDH would be a plausible analogue of the Cramer-Shoup system. Building a chosen
ciphertext secure IBE (IND-ID-CCA) in the standard model is currently an open problem.
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A Definition of the Weil pairing

We define the Weil pairing and show how to efficiently compute it using an algorithm due to Miller [34].
To be concrete we present the algorithm as it applies to supersingular elliptic curves defined over a
prime field F), with p > 3 (the curve y? = 23 + 1 over F, with p = 2 mod 3 is an example of such a
curve). The definition and algorithm easily generalize to computing the Weil pairing over other elliptic
curves. We state a few elementary facts about such curves [43]:

Fact 1: A supersingular curve E/F, (with p > 3) contains p + 1 points in F,. We let O denote the
point at infinity. The group of points over F,, forms a cyclic group of order p + 1. Let P € E(FF,) be
a point order n where n divides p + 1.

Fact 2: The group of points E(F,2) contains a point @ of order n which is linearly independent of
the points in E(FF,). Hence, E(FF,2) contains a subgroup which is isomorphic to the group 72. The
group is generated by P € E(F,) and Q € E(F,2). We denote this group by F[n].

Throughout this section we let Gy denote the subgroup of IF;‘)Q of order n. We will be working with

the Weil pairing e which maps pairs of points in E[n] to Gg, i.e. e: E[n] x E[n] — Gg. To define the

pairing, we review a few basic concepts (see [29, pp. 243-245]). In what follows we let P and @ be
arbitrary points in F(F2).

Divisors A divisor is a formal sum of points on the curve E(F,2). We write divisors as A =} p a,(P)
where ap € Z and P € E(F,2). For example, A = 3(P;) — 2(P) — (P%) is a divisor. We will only
consider divisors A =, a,(P) where ) pa, = 0.

Functions Roughly speaking, a function f on the curve E(F,2) can be viewed as a rational function
f(z,y) € Fp2(z,y). For any point P = (z,y) € E(F,2) we define f(P) = f(z,y).

Divisors of functions Let f be a function on the curve E(F,2). We define its divisor, denoted by
(f), as (f) = >_pordp(f) - (P). Here ordp(f) is the order of the zero that f has at the point
P. For example, let ax + by + ¢ = 0 be the line passing through the points P, Py € E(sz)
with P; £ +P. This line intersects the curve at a third point P3 € E(sz). Then the function
f(z,y) = ax 4+ by + ¢ has three zeroes Pi, Py, P3 and a pole of order 3 at infinity. The divisor of
fis (f) = (1) + (P2) + (P5) — 3(0).

Principal divisors Let A be a divisor. If there exists a function f such that (f) = A then we say
that A is a principal divisor. We know that a divisor A = ), a,(P) is principal if and only if
Y.pap=0and > papP = O. Note that the second summation is using the group action on the
curve. Furthermore, given a principal divisor A there exists a unique function f (up to constant
multiples) such that (A) = (f).

Equivalence of divisors We say that two divisors A, B are equivalent if their difference A — B is a
principal divisor. We know that any divisor A =) a,(P) (with Y pap = 0) is equivalent to a
divisor of the form A" = (Q) — (O) for some @ € E. Observe that Q =) papP.

Notation Given a function f and a divisor A = ) 5 a,(P) we define f(A) as f(A) = [[p f(P)*".
Note that since ) pap = 0 we have that f(A) remains unchanged if instead of f we use ¢f for
any ¢ € Fp.

We are now ready to define the Weil pairing of two points P,Q € E[n]. Let Ap be some divisor
equivalent to the divisor (P) — (O). We know that n.Ap is a principal divisor (it is equivalent to
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n(P) —n(O) which is clearly a principal divisor). Hence, there exists a function fp such that (fp) =
nAp. Define Ag and fg analogously. The Weil pairing of P and @ is defined as:

fp(Ag)
fo(Ap)

This ratio defines the Weil pairing of P and () whenever it is well defined (no division by zero occurred).
If this ratio is undefined we use different divisors Ap, Ag to define e(P, Q).

We briefly show that the Weil pairing is well defined. That is, the value of e(P, Q) is independent
of the choice of the divisor Ap as long as Ap is equivalent to (P) — (O) and Ap leads to a well defined
value. The same holds for Ag. Let .Ap be a divisor equlvalent to Ap and let fp be a function so that
(fp) =nAp. Then Ap = Ap + (g) for some function g and fp fp-g". We have that:

e(P.Q) = fr(4q) _ fr(AQlg(AQ)" _ fr(Aq) g(nAq) _ fr(Aq) ¢((f)) _ fr(Ag)
fo(Ap)  fa(Ap)fo((9))  fo(Ar) fo((9))  fo(Ar) fo((9))  fol(Ap)

The last equality follows from the following fact known as Weil reciprocity: for any two functions f, g
we have that f((g)) = g((f)). Hence, the Weil pairing is well defined.

Fact A.1. The Weil pairing has the following properties for points in E[n]:

e(P,Q) =

e For all P € E[n| we have: e(P,P) =

e Bilinear: e(Py + P»,Q) = e(P1,Q) - e(P2,Q) and e(P,Q1+ Q2) =e(P,Q1)-e(P,Q2).
e When P,Q € E[n] are collinear then e(P,Q) = 1. Similarly, e(P,Q) = e(Q, P)~1

e n’th root: for all P,Q € E[n] we have e(P,Q)" =1, i.e. e(P,Q) € Ga.

e Non-degenerate in the following sense: if P € Eln| satisfies e(P,Q) = 1 for all QQ € E[n] then
P=0.

As discussed in Section 5, our concrete IBE scheme uses the modified Weil pairing é(P,Q) =
e(P, ¢(Q)), where ¢ is an automorphism on the group of points of E.

Tate pairing. The Tate pairing [17] is another bilinear pairing that has the required properties for
our system. We slightly modify the original definition to fit our purpose. Define the Tate pairing of two
points P,Q € E[n] as T(P,Q) = fp(.AQ)‘F;Ql/n where fp and Ag are defined as above. This definition
gives a computable bilinear pairing 7" : E[n] x E[n] — Ga.

B Computing the Weil pairing

Given two points P,Q € E[n] we show how to compute e(P,Q) € IE‘;; using O(logp) arithmetic
operations in F),. We assume P # (). We proceed as follows: pick two random points Ry, Ry € E[n].
Consider the divisors Ap = (P + R1) — (R1) and Ag = (Q + R2) — (R2). These divisors are equivalent
to (P) — (0O) and (@) — (O) respectively. Hence, we can use Ap and Ag to compute the Weil pairing
as:

o(P.Q) = 1PAQ) _ IP(Q+ Ro)fo(Bn)
’ fo(Ap)  fr(R2)fo(P + R1)
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This expression is well defined with very high probability over the choice of Ry, Ry (the probability of
failure is at most O(k’%)). In the rare event that a division by zero occurs during the computation of
e(P, Q) we simply pick new random points R, Ry and repeat the process.

To evaluate e(P, Q) it suffices to show how to evaluate the function fp at Ag. Evaluating fo(Ap)
is done analogously. We evaluate fp(Ag) using repeated doubling. For a positive integer b define the
divisor

Ay = b(P + R1) — b(Rl) — (bP) + (O)

It is a principal divisor and therefore there exists a function fj, such that (f;) = Ap. Observe that
(fp) = (fn) and hence, fp(Ag) = fn(Ag). It suffices to show how to evaluate f,(Ag).

Lemma B.1. There is an algorithm D that given fy(AqQ), f.(Aq) and bP,cP, (b+c)P for someb,c > 0
outputs fyic(Aq). The algorithm only uses a (small) constant number of arithmetic operations in I z.

Proof. We first define two auxiliary linear functions g1, go:

1. Let ajx + biy + ¢1 = 0 be the line passing through the points bP and c¢P (if b = ¢ then let
a1z + biy + c¢1 = 0 be the line tangent to E at bP). Define g1(x,y) = a1z + b1y + c1.

2. Let x + ¢o = 0 be the vertical line passing through the point (b + ¢)P. Define ga(z,y) = = + c2

The divisors of these functions are:
(g1) = (bP)+ (cP)+(=(b+c)P)—3(0)
(92) = ((b+)P)+(=(b+c)P)—2(0)
By definition we have that:
Ay = b(P+Ry)—b([Ry) — (bP) + (O
+

)
A, = C(P + R1) — C(Rl) — (CP) (O)
Apre = (b+c)(P+Ri) = (b+c)(R1) — ((b+)P) + (0)

It now follows that: Ayt = Ap + Ac + (91) — (92). Hence:

91(Aq)
92(AQ)
This shows that to evaluate fy4.(Ag) it suffices to evaluate g;(Ag) for all i = 1,2 and plug the results

into equation 2. Hence, given f,(Ag), f.(Ag) and bP, cP, (b + c¢)P one can compute f4.(Ag) using a
constant number of arithmetic operations. O

fore(AQ) = fo(Ag) - fe(AQ)

(2)

Let D(f,(Ag), fo(Ag),bP, cP, (b+c)P) = fy1c(Ag) denote the output of Algorithm D of Lemma B.1
above. Then one can compute fp(Ag) = fn(Ag) using the following standard repeated doubling
procedure. Let n = b,,b,,,_1...b1bg be the binary representation of n, i.e. n = Z:‘io b; 2.

Init: Set Z =0,V = fo(Ag) =1, and k = 0.

Iterate: Fori =m,m—1,...,1,0 do:
1: If b; = 1 then do: Set V. =D(V, fi(Ag),Z,P,Z + P),set Z =7 + P, and set k =k + 1.
2. fi>0set V=DV,V,Z,Z,27), set Z =27, and set k = 2k.
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3: Observe that at the end of each iteration we have Z = kP and V = fi(Ag).

Output: After the last iteration we have k = n and therefore V' = f,,(Ag) as required.

To evaluate the Weil pairing e(P, ) we run the above algorithm once to compute fp(Ag) and once to
compute fo(Ap). The Tate pairing is evaluated similarly. Note that the repeated squaring algorithm
needs to evaluate fi(Ag). This is easily done since the function fi(x,y) (whose divisor is (f1) =
(P+ R1) — (R1) — (P) 4+ (O) ) can be written out explicitly as follows:

1. Let a1z + b1y + ¢1 = 0 be the line passing through the points P and R;. Define the function:
g1(z,y) = a1z + by + 1.

2. Let £ + co = 0 be the vertical line passing through the point P 4+ R;. Define the function:
92(x,y) = = + ca.

3. The function fi(x,y) is simply fi(x,y) = g2(x,y)/g1(x,y) which is easy to evaluate in FF 2.
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Abstract

An aggregate signature scheme is a digital signature that supports aggregation: Given n
signatures on n distinct messages from n distinct users, it is possible to aggregate all these
signatures into a single short signature. This single signature (and the n original messages)
will convince the verifier that the n users did indeed sign the n original messages (i.e., user 4
signed message M; for i = 1,...,n). In this paper we introduce the concept of an aggregate
signature, present security models for such signatures, and give several applications for aggregate
signatures. We construct an efficient aggregate signature from a recent short signature scheme
based on bilinear maps due to Boneh, Lynn, and Shacham. Aggregate signatures are useful
for reducing the size of certificate chains (by aggregating all signatures in the chain) and for
reducing message size in secure routing protocols such as SBGP. We also show that aggregate
signatures give rise to verifiably encrypted signatures. Such signatures enable the verifier to test
that a given ciphertext C is the encryption of a signature on a given message M. Verifiably
encrypted signatures are used in contract-signing protocols. Finally, we show that similar ideas
can be used to extend the short signature scheme to give simple ring signatures.

1 Introduction

Many real-world applications involve signatures on many different messages generated by many
different users. For example, in a Public Key Infrastructure (PKI) of depth n, each user is given
a chain of n certificates. The chain contains n signatures by n Certificate Authorities (CAs) on
n distinct certificates. Similarly, in the Secure BGP protocol (SBGP) [18] each router receives a
list of n signatures attesting to a certain path of length n in the network. A router signs its own
segment in the path and forwards the resulting list of n + 1 signatures to the next router. As
a result, the number of signatures in routing messages is linear in the length of the path. Both
applications would benefit from a method for compressing the list of signatures on distinct messages
issued by distinct parties. Specifically, X.509 certificate chains could be shortened by compressing
the n signatures in the chain into a single signature.

An aggregate signature scheme enables us to achieve precisely this type of compression. Suppose
each of n users has a public-private key pair (PK;, SK;). User u; signs message M; to obtain a
signature ;. Then there is a public aggregation algorithm that takes as input all of o4, ..., 0, and
outputs a short compressed signature o. Anyone can aggregate the n signatures. Moreover, the
aggregation can be performed incrementally. That is, signatures o1, 09 can be aggregated into o129
which can then be further aggregated with o3 to obtain o123. When aggregating signatures in a
certificate chain, each CA can incrementally aggregate its own signature into the chain. There is
also an aggregate verification algorithm that takes PK+,...,PK,, Mi,...,M,, and o and decides
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whether the aggregate signature is valid. Intuitively, the security requirement is that the aggregate
signature o is declared valid only if the aggregator who created o was given all of 01, ..., 0,. Precise
security definitions are given in Sect. 3.2. Thus, an aggregate signature provides non-repudiation
at once on many different messages by many users.

We construct an aggregate signature scheme based on a recent short signature due to Boneh,
Lynn, and Shacham (BLS) [6]. This signature scheme works in any group where the Decision Diffie-
Hellman problem (DDH) is easy, but the Computational Diffie-Hellman problem (CDH) is hard.
We refer to such groups as gap groups [6, 26]. Recently there have been a number of constructions
using such gap groups [6, 19, 8, 4]. Surprisingly, general gap groups are insufficient for constructing
efficient aggregate signatures. Instead, our construction uses a pair of groups G'1, Gt and a bilinear
map e : G1 X G — Gp where CDH is hard in G;. Joux and Nguyen [17] showed that the map e
can be used to solve DDH in G1, and so G; is a gap group. It is the extra structure provided by
the bilinear map that enables us to construct an efficient aggregate signature scheme. We do not
know how to build efficient aggregate signatures from general gap groups. Thus, our construction
is an example where the bilinear map provides extra functionality beyond a simple algorithm for
solving DDH. Bilinear maps were previously used for three-way Diffie-Hellman [16], Identity-Based
Encryption (IBE) [5], and Hierarchical IBE [15, 13].

Aggregate signatures are related to multisignatures [20, 25, 24, 4]. In multisignatures, a set of
users all sign the same message and the result is a single signature. Recently, Micali et al. [20]
defined a security model for multisignatures and gave some constructions and applications. Mul-
tisignatures are insufficient for the applications we have in mind, such as certificate chains and
SBGP. For these applications we must be able to aggregate signatures on distinct messages. We
note that recently Boldyreva [4] showed that general gap groups are sufficient for constructing mul-
tisignatures from BLS signatures. As noted above, to obtain aggregate signatures, one needs the
extra structure provided by bilinear maps.

Our application of aggregate signatures to compressing certificate chains is related to an open
problem posed by Micali and Rivest [21]: Given a certificate chain and some special additional
signatures, can intermediate links in the chain be cut out? Aggregate signatures allow the com-
pression of certificate chains without any additional signatures, but a verifier must still be aware
of all intermediate links in the chain. We note that batch RSA [9] also provides some signature
compression, but only for signatures produced by a single signer.

As a further application for aggregate signatures we show in Sect. 4 that certain aggregate
signature schemes give rise to simple verifiably encrypted signatures. These signatures enable user
Alice to give Bob a signature on a message M encrypted using a third party’s public key and Bob to
verify that the encrypted signature is valid. Verifiably encrypted signatures are used in optimistic
contract signing protocols [1, 2] to enable fair exchange. Previous constructions [1, 27] require zero
knowledge proofs to verify an encrypted signature. The verifiably encrypted signatures in Section 4
are short and can be validated efficiently. We note that the resulting contract signing protocol is
not abuse-free in the sense of [10].

As a third application of these ideas we construct in Sect. 5 a simple ring signature [28] using
bilinear maps. As above, the construction using a bilinear map is simpler and more efficient than
constructions that only make use of gap groups.

2 Signature Schemes Based on Co-Gap Diffie-Hellman

We first review a few concepts related to bilinear maps and Gap Diffie-Hellman signatures [6].
Throughout the paper we use the following notation:
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1. G and G are two (multiplicative) cyclic groups of prime order p;

2. g1 is a generator of G1 and gs is a generator of Ga;

3. 1 is a computable isomorphism from Gs to Gy, with ¢(g2) = ¢g1; and
4. e is a computable bilinear map e : G; x Gy — G as described below.

The isomorphism ) is mostly needed for the proofs of security. To keep the discussion general, we
simply assume that i exists and is efficiently computable. When G1, G5 are subgroups of the group
of points of an elliptic curve E/F,, the trace map on the curve can be used as this isomorphism
(we assume G; C E(F;) and Gy C E(Fyr)).

Throughout the paper, we consider bilinear maps e : G1 x Go — Gp where all groups G1, G, G
are multiplicative and of prime order p. One could set G; = Go. However, we allow for the more
general case where G1 # (G2 so that our constructions can make use of certain families of non-
supersingular elliptic curves defined by Miyaji et al. [22]. These curves give rise to very short
signatures [6]. This will lead in turn to short aggregate signatures, ring signatures, etc. To handle
the case G1 # G4 we define the co-CDH and co-DDH problems [6]. When G1 = G2, these problems
reduce to the standard CDH and DDH problems. Hence, for the remainder of the paper, although
we handle arbitrary G1,Ga, for simplicity, the reader may assume G; = Ga,91 = g2, and ¢ = I,
the identity map.

With this setup we obtain natural generalizations of the CDH and DDH problems:

Computational Co-Diffie-Hellman. Given g9, g5 € G2 and h € G; compute h® € G.

Decision Co-Diffie-Hellman. Given g2,95 € G2 and h,h? € Gy output yes if a = b and no
otherwise. When the answer is yes we say that (g2, g5, h, h*) is a co-Diffie-Hellman tuple.

When G| = G35 and g1 = g9, these problems reduce to the standard CDH and DDH. Next we define
co-GDH gap groups to be group pairs G; and G2 on which co-DDH is easy but co-CDH is hard.

Definition 2.1. Two groups (G1,G3) are a decision group pair for co-Diffie-Hellman if the group
action on G1, the group action on G, and the map 1 from G2 to G; can be computed in one time
unit, and Decision co-Diffie-Hellman on (G, G2) can be solved in one time unit.

Definition 2.2. The advantage of an algorithm A in solving the Computational co-Diffie-Hellman
problem in groups G and G» is

Adv co-CDH_4 % pr [A(gg,gg, =h:alz, hdc

The probability is taken over the choice of a, h, and A’s coin tosses. An algorithm A (¢, €)-breaks
Computational co-Diffie-Hellman on G; and Gs if A runs in time at most ¢, and Adv co-CDH 4 is
at least e. Two Groups (G1,G3) are a (t, €)-co-GDH group pair if they are a decision group pair
for co-Diffie-Hellman and no algorithm (¢, €)-breaks Computational co-Diffie-Hellman on them.

2.1 Bilinear Maps

Let G; and Gg be two groups as above, with an additional group G such that |G| = |G2| = |G7|.
A bilinear map is a map e : G; X Gy — Gp with the following properties:

1. Bilinear: for all u € Gy,v € Gy and a,b € Z, e(u®,v*) = e(u, v)®.
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2. Non-degenerate: e(g1,92) # 1.

These properties imply two more: for any uj,uz € G1,v € G, e(ujug,v) = e(uy,v) - e(uz,v); and
for any u,v € Ga, e(¢(u),v) = e(¢(v),u).

Definition 2.3. Two groups (G1,G2) are a bilinear group pair if the group action on either can be
computed in one time unit, the map 1 from G4 to G1 can be computed in one time unit, a bilinear
map e : Gy X Gy — G exists, and e is computable in one time unit.

Definition 2.4. Two groups (G1,G2) are a (t, €)-bilinear group pair for co-Diffie-Hellman if they
are a bilinear group pair and no algorithm (¢, €)-breaks Computational co-Diffie-Hellman on them.

Joux and Nguyen [17] showed that an efficiently-computable bilinear map e provides an algo-
rithm for solving the decision co-Diffie-Hellman problem. For a tuple (ga, g3, h, h?) we have

a=bmodp <= e(h,gs) =e(hb, g) .

Consequently, if two groups (G, G2) are a (t, €)-bilinear group pair for co-Diffie-Hellman, then they
are also a (t/2, €)-co-GDH group pair. The converse is probably not true.

2.2 The Co-GDH Signature Scheme

We review the signature scheme of [6], which can be based on any gap group. It comprises three
algorithms, KeyGen, Sign, and Verify, and uses a full-domain hash function H : {0,1}* — G,
viewed as a random oracle [3].

Key Generation. Pick random z & Zyp, and compute v < g5. The public key is v € G2. The
secret key is x € Zp.

Signing. Given a secret key = and a message M € {0,1}*, compute h « H(M), where h € Gy,
and o « h*. The signature is o € G;.

Verification. Given a public key v, a message M, and a signature o, compute h <« H(M) and
verify that (g2, v, h, o) is a valid co-Diffie-Hellman tuple.

A co-GDH signature is a single element of G1. On certain elliptic curves these signatures are very
short: they are half the size of DSA signatures with similar security. Theorem 1 of [6] proves the
existential unforgeability of the scheme under a chosen message attack [14] in the random oracle
model assuming (G1, G2) is a co-gap group pair for Diffie-Hellman.

3 Aggregate Signatures

We define aggregate signatures and describe an aggregate signature scheme based on co-GDH
signatures. Unlike the co-GDH scheme, aggregate signatures require the existence of a bilinear
map. We define security models and provide proofs of security for aggregate signatures.

Consider a set U of users. Each user u € U has a signing keypair (PK,, SK,). We wish to
aggregate the signatures of some subset U C U. Each user u € U produces a signature o, on a
message M, of her choice. These signatures are then combined into a single aggregate o by an
aggregating party. The aggregating party, who can be different from and untrusted by the users
in U, has access to the users’ public keys, to the messages, and to the signatures on them, but not

207



to any private keys. The result of this aggregation is an aggregate signature o whose length is the
same as that of any of the individual signatures. This aggregate has the property that a verifier
given ¢ along with the identities of the parties involved and their respective messages is convinced
that each user signed her respective message.

3.1 Bilinear Aggregate Signatures

We describe a bilinear aggregate signature scheme based on the co-GDH scheme presented above.
Individual signatures in the aggregate signature scheme are created and verified precisely as are
signatures in the co-GDH scheme (Sect. 2.2). Aggregate verification makes use of a bilinear map
on GG and Gs.

The aggregate signature scheme allows the creation of signatures on arbitrary distinct messages
M; € {0,1}*. An individual signature o; is an element of G;. The base groups G and Ga, their
respective generators g1 and gs, the computable isomorphism ¥ from Ga to G1, and the bilinear
map e : Gy X Gy — Gp, with target group G, are system parameters.

The scheme comprises five algorithms: KeyGen, Sign, Verify, Aggregate, and Aggregate Verify.
The first three are as in ordinary signature schemes; the last two provide the aggregation capability.
The scheme employs a full-domain hash function H : {0,1}* — G, viewed as a random oracle.

Key Generation. For a particular user, pick random x & Zyp, and compute v < g5. The user’s
public key is v € G2. The user’s secret key is x € Z,,.

Signing. For a particular user, given the secret key z and a message M € {0,1}*, compute
h «— H(M), where h € G1, and o < h”. The signature is o € G;.

Verification. Given user’s public key v, a message M, and a signature o, compute h «— H(M);
accept if e(o, g2) = e(h,v) holds.

Aggregation. For the aggregating subset of users U C U, assign to each user an index ¢, ranging
from 1 to k = |U|. Each user u; € U provides a signature o; € G; on a message M; € {0,1}*
of his choice. The messages M; must all be distinct. Compute o «+ Hle oi. The aggregate
signature is ¢ € G.

Aggregate Verification. We are given an aggregate signature o € G; for an aggregating subset
of users U, indexed as before, and are given the original messages M; € {0,1}* and public
keys v; € Go for all users u; € U. To verify the aggregate signature o,

1. ensure that the messages M; are all distinct, and reject otherwise; and

2. compute h; < H(M;) for 1 <i <k = |U|, and accept if e(c, g2) = Hle e(hi,v;) holds.
A bilinear aggregate signature, like a co-GDH signature, is a single element of GG;. Note that
aggregation can be done incrementally.

The intuition behind bilinear aggregate signatures is as follows. Each user w; has a secret
key z; € Z, and a public key v; = g5°. User u;’s signature, if correctly formed, is 0; = h;*, where h;
is the hash of the user’s chosen message, M;. The aggregate signature o is thus o = [[, 0; = [[; h{".
Using the properties of the bilinear map, the left-hand side of the verification equation expands:

e(o,92) = G(Hi hit, g2) = Hie(hiaQQ)mi = 1_[Z e(hi, g5') = Hie(hi,vi) ;

which is the right-hand side, as required. It remains to prove the security of the scheme.
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3.2 Aggregate Signature Security

Informally, the security of aggregate signature schemes is equivalent to the nonexistence of an adver-
sary capable, within the confines of a certain game, of existentially forging an aggregate signature.
Existential forgery here means that the adversary attempts to forge an aggregate signature, on
messages of his choice, by some set of users.

We formalize this intuition as the aggregate chosen-key security model. In this model, the
adversary A is given a single public key. His goal is the existential forgery of an aggregate signature.
We give the adversary power to choose all public keys except the challenge public key. The adversary
is also given access to a signing oracle on the challenge key. His advantage, Adv AggSig 4, is defined
to be his probability of success in the following game.

Setup. The aggregate forger A is provided with a public key PK7, generated at random.
Queries. Proceeding adaptively, A requests signatures with PK; on messages of his choice.

Response. Finally, A outputs k — 1 additional public keys PKs,..., PK;. Here k is at
most N, a game parameter. These keys, along with the initial key PK7, will be included
in A’s forged aggregate. A also outputs messages My, ..., My; and, finally, an aggregate
signature o by the k users, each on his corresponding message.

The forger wins if the aggregate signature o is a valid aggregate on messages My, ..., My
under keys PKi,..., PKj, and o is nontrivial, i.e., A did not request a signature on M;
under PKj. The probability is over the coin tosses of the key-generation algorithm and of A.

Definition 3.1. An aggregate forger A (¢, qu, qs, N, €)-breaks an N-user aggregate signature scheme
in the aggregate chosen-key model if: A runs in time at most t; A makes at most gy queries to the
hash function and at most g5 queries to the signing oracle; Adv AggSig 4 is at least €; and the forged
aggregate signature is by at most N users. An aggregate signature scheme is (¢, ¢y, ¢s, IV, €)-secure
against existential forgery in the aggregate chosen-key model if no forger (¢, gy, qs, N, €)-breaks it.

A potential attack on aggregate signatures. The adversary’s ability in the chosen-key model
to generate keys suggests the following attack, previously considered in the context of multisigna-
tures [20, 4]. Alice publishes her public key v4. Bob generates a private key 2’3 and a public

key vz = ggb, but publishes as his public key vp = vz /v4, a value whose discrete log he does not
know. Then H(M )mﬁ verifies as an aggregate signature on M by both Alice and Bob. Note that
in this forgery Alice and Bob both sign the same message M.

One countermeasure is to require the adversary to prove knowledge of the discrete logarithms
(to base g2) of his published public keys. For example, Boldyreva, in her multisignature scheme [4],
requires, in effect, that the adversary disclose the corresponding private keys xo, ..., z;. Micali et
al. [20] discuss a series of more sophisticated approaches based on zero-knowledge proofs, again with
the effect that the adversary is constrained in his key selection. These defenses apply equally well
to our aggregate signature scheme. For aggregate signatures, though, there is a simpler defense.

A simple defense for aggregate signatures. In the context of aggregate signatures we can
defend against the attack above by simply requiring that an aggregate signature is valid only if
it is an aggregation of signatures on distinct messages. This restriction, codified in Step 1 of
Aggregate Verify, suffices to prove the security of the bilinear aggregate signature scheme in the
chosen-key model. There is no need for zero-knowledge proofs or the disclosure of private keys.
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The requirement that all messages in an aggregate be distinct is naturally satisfied for the
applications to certificate chains and SBGP we have in mind. Even in more general environments
it is easy to ensure that all messages are distinct: The signer simply prepends her public key to
every message she signs prior to the application of the hash function H. The implicit prefix need
not be transmitted with the signature, so signature and message length is unaffected.

The next theorem shows that this simple constraint is sufficient for proving security in the
chosen-key model.

Theorem 3.2. Let (G1,G2) be a (t',€)-bilinear group pair for co-Diffie-Hellman, with each group
of order p, with respective generators g1 and go, with an isomorphism ¥ computable from Go to G,
and with a bilinear map e : G1 X Gog — Gr. Then the bilinear aggregate signature scheme on
(G1,G29) is (t,qu, qs, N, €)-secure against existential forgery in the aggregate chosen-key model for
all t and e satisfying

e>elgs+N)- € and  t<t' —cq(qu+2¢s+N+4)—(N+1),
where e is the base of natural logarithms, and exponentiation and inversion on G1 take time cg, .

Proof. Suppose A is a forger algorithm that (¢, qs, gu, N, €)-breaks the signature scheme. We show
how to construct a t'-time algorithm C that solves co-CDH in (G1, G2) with probability at least €.
This will contradict the fact that (G1,G2) are a (¢, €)-co-GDH group pair.

Let g2 be a generator of Gy. Algorithm C is given g2, u € G2 and h € Gy, where u = g9. Its goal
is to output h?® € GG;. Algorithm C simulates the challenger and interacts with forger A as follows.

Setup. Algorithm C starts by giving A the generator go and the public key v = u- g5 € G2, where
r is random in Z,.

Hash Queries. At any time algorithm A can query the random oracle H. To respond to these
queries, C maintains a list of tuples (M (i),w(i),b(i),c(i)) as explained below. We refer to
this list as the H-list. The list is initially empty. When A queries the oracle H at a point
M € {0, 1}*, algorithm C responds as follows:

1. If the query M already appears on the H-list in some tuple (M, w, b, c) then algorithm C
responds with H(M) = w € Gy.

2. Otherwise, C generates a random coin ¢ € {0,1} so that Pr[c = 0] =1/(¢gs + N).

3. Algorithm C picks a random b € Z,,. If ¢ = 0 holds, C computes w « h -1 (g2)® € Gy. If
¢ =1 holds, C computes w « 1(g2)* € G1.

4. Algorithm C adds the tuple (M, w, b, c) to the H-list and responds to A as H(M) = w.

Note that, either way, w is uniform in G; and is independent of A’s current view as required.

Signature queries. Algorithm A requests a signature on some message M under the challenge
key vy. Algorithm C responds to this query as follows:

1. Algorithm C runs the above algorithm for responding to H-queries on M, obtaining the
corresponding tuple (M, w, b, ¢) on the H-list. If ¢ = 0 holds then C reports failure and
terminates.

2. We know that ¢ = 1 holds and hence w = ¥(g2)? € G1. Let o = 1 (u)® - 1(g2)"™ € Gi.
Observe that 0 = w®"™ and therefore o is a valid signature on M under the public key

vy =u-gh=g3"". Algorithm C gives o to algorithm A.

210



Output. Finally, A halts. It either concedes failure, in which case so does C, or it returns a

value k (where k& < N), k — 1 public keys va,...,vp € Go, k messages My, ... My, and a
forged aggregate signature o € (G;. The messages M; must all be distinct, and .A must not
have requested a signature on M7. Algorithm C runs its hash algorithm at each M;, 1 <i < k,
obtaining the k corresponding tuples (M;, w;, b;, ¢;) on the H-list.
Algorithm C now proceeds only if ¢; = 0 and, for 2 < ¢ < k, ¢; = 1; otherwise C declares
failure and halts. Since ¢; = 0, it follows that w; = h - (g2)?. For i > 1, since ¢; = 1, it
follows that w; = 1(g2)%. The aggregate signature o must satisfy the aggregate verification
equation, e(o, g2) = H?Zl e(w;,v;). For each i > 1, C sets o; « 9 (v;)%. Then, for i > 1,

e(0i, 92) = e(1(v:)", g2) = e(P(vi), g2)" = e(¥(ga), vi)" = e(¥(g2)", vi) = e(wi, v;)
So o; is a valid signature on M; (whose hash is w;) by the key whose public component is v;.

-1
Now C constructs a value o1: 01 < o - ([[*_y0;) . Then

k

K
e(o1,92) = e(0,92) - [ [ e0i, 92) " = [ [ ews, v0) - [ ] ews, 00) ™" = ewr, 01)

i=2 i=1 =2

Thus o, is a valid co-GDH signature by key v; = u-g5 = ggw on a message whose hash is w; =
h-1(g2)*. Then C calculates and outputs the required h® as h® « o - (1 (u)? -h"-9)(g2)™1) L.

This completes the description of algorithm C. It remains to show that C solves the given instance
of the co-CDH problem in (G1,G3) with probability at least ¢/. To do so, we analyze the three
events needed for C to succeed:

&1: C does not abort as a result of any of A’s signature queries.
&yt A generates a valid and nontrivial aggregate signature forgery (k,va, ..., vk, M1,..., My, 0).

&3: Event & occurs, and, in addition, ¢; = 0, and, for 2 < ¢ < k, ¢; = 1, where for each i ¢; is the
c-component of the tuple containing M; on the H-list.

C succeeds if all of these events happen. The probability Pr[€; A €3] decomposes as
Pr[é'l VAN 53} = Pl"[gl] . PI“[SQ | 51] . Pr[€3 ‘ E1 N 82] (1)
The following claims give a lower bound for each of these terms.

Claim 3.3. The probability that algorithm C does not abort as a result of A’s aggregate signature
queries is at least (1 —1/(qgs + N))%. Hence, Pr[€1] > (1 —1/(¢gs + N))%s.

Proof. Without loss of generality we assume that A does not ask for the signature of the same
message twice. We prove by induction that after A makes ¢ signature queries the probability
that C does not abort is at least (1 — 1/(gs 4+ N))*. The claim is trivially true for £ = 0. Let M©®)
be A’s £’th signature query and let (M© w® b® ) be the corresponding tuple on the H-list.
Then, prior to A’s issuing the query, the bit ¢¥) is independent of A’s view — the only value that
could be given to A that depends on ¢ is H(M®), but the distribution of H(M®) is the same
whether ¢ = 0 or ¢(® = 1. Therefore, the probability that this query causes C to abort is at most
1/(gs + N). Using the inductive hypothesis and the independence of @ the probability that C
does not abort after this query is at least (1 — 1/(gs + N))¢. This proves the inductive claim.
Since A makes at most gs signature queries the probability that C does not abort as a result of all
signature queries is at least (1 —1/(gs + N))%s. O
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Claim 3.4. If algorithm C does not abort as a result of A’s queries then algorithm A’s view is
identical to its view in the real attack. Hence, Pr[€ | £1] > €.

Proof. The public key given to A is from the same distribution as public keys produced by algo-
rithm KeyGen. Responses to hash queries are as in the real attack since each response is uniformly
and independently distributed in G1. Since C did not abort as a result of A’s signature queries, all
its responses to those queries are valid. Therefore A will produce a valid and nontrivial aggregate
signature forgery with probability at least e. Hence Pr[€; | £1] > €. O

Claim 3.5. The probability that algorithm C does not abort after A outputs a valid and nontrivial
forgery is at least (1 —1/(qgs + N))N~1.1/(qs + N).
Hence, Pr[€3 | E1 N E) > (1 —1/(gs + N)N"1-1/(gs + N).

Proof. Events & and & have occurred, and A has generated some valid and nontrivial forgery
(k,vo,...,v5, M1,...,My,0). For each i, 1 <i <k, let (M;,w;, b;,c;) be the tuple corresponding
to M; on the H-list. Algorithm C will abort unless A generates a forgery such that ¢; = 0 and, for
1>1,¢,=1.

Since all the messages M1, Mo, ..., M} are distinct, the values c1, ca, ..., ¢, are all independent
of each other; as before, H(M;) = w; is independent of ¢; for each i.

Since its forgery is nontrivial, A cannot have asked for a signature on M; under key vi. It
can thus have no information about the value of ¢;; in the forged aggregate, ¢c; = 0 occurs with
probability 1/(¢s + N). For each i > 1, A either asked for a signature under key v, on M;, in which
case ¢; = 1 with probability 1, or it didn’t, and ¢; = 1 with probability 1 —1/(gs + N). Regardless,
the probability that ¢; = 1 for all 4,2 < i < k, is at least (1—1/(gs + N))*~1 > (1-1/(gs + N))V L.

Therefore Pr[€3 | &1 A &) > (1 —1/(gs + N))N~=1-1/(gs + N), as required. O

To complete the proof of Theorem 3.2, we use the bounds from the claims above in equation (1).
Algorithm C produces the correct answer with probability at least

1 gs+N-1 1
1— . e > > ¢
( QS+N) gs+N T g+ N T
as required.

Algorithm C’s running time is the same as A’s running time plus the time is takes to respond to
(qu + qs) hash queries and gy signature queries, and the time to transform A’s final forgery into the
co-CDH solution. Each query requires an exponentiation in GG;. The output phase requires at most
N additional hash computations, two inversions, two exponentiations, and N + 1 multiplications.
We assume that exponentiation and inversion in G take time cg,. Hence, the total running time
is at most t + ¢, (quw +2¢s + N +4) + N + 1 < t' as required. This completes the proof of
Theorem 3.2. ]

Aggregate verification time. Let o be an aggregate of the n signatures o1, ..., 0,. The time to
verify the aggregate signature o is linear in n. In the special case when all n signatures are issued
by the same public key v, aggregate verification is faster. One need only verify that e(o, g2) =
e(v, [Ty H(M;)) holds, where My, ..., M, are the signed messages.
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4 Verifiably Encrypted Signatures

Next, we show an application of aggregate signatures to verifiably encrypted signatures. Verifiably
encrypted signatures are used in applications such as online contract signing [1, 2]. Suppose Alice
wants to show Bob that she has signed a message, but does not want Bob to possess her signature
of that message. (Alice will give her signature to Bob only when a certain event has occurred, e.g.,
Bob has given Alice his signature on the same message.) Alice can achieve this by encrypting her
signature using the public key of a trusted third party, and sending this to Bob along with a proof
that she has given him a valid encryption of her signature. Bob can verify that Alice has signed the
message, but cannot deduce any information about her signature. Later in the protocol, if Alice is
unable or unwilling to reveal her signature, Bob can ask the third party to reveal Alice’s signature.
We note that the resulting contract signing protocol is not abuse-free in the sense of [10].

We show that a variant of the bilinear aggregate signature scheme allows the creation of very
efficient verifiably encrypted signatures.

4.1 Verifiably Encrypted Signature Security

A verifiably encrypted signature scheme comprises seven algorithms. Three, KeyGen, Sign, and
Verify, are analogous to those in ordinary signature schemes. The others, AdjKeyGen, VESigCreate,
VESigVerify, and Adjudicate, provide the verifiably encrypted signature capability. The algorithms
are described below. We refer to the trusted third party as the adjudicator.

Key Generation, Signing, Verification. As in standard signature schemes.
Adjudicator Key. Generate a public-private key pair (APK, ASK) for the adjudicator.

VESig Creation. Given a secret key SK, a message M, and an adjudicator’s public key APK,
compute (probabilistically) a verifiably encrypted signature w on M.

VESig Verification. Given a public key PK, a message M, an adjudicator’s public key APK,
and a verifiably encrypted signature w, verify that w is a valid verifiably encrypted signature
on M under key PK.

Adjudication. Given an adjudicator’s keypair (APK, ASK), a certified public key PK, and a
verifiably encrypted signature w on some message M, extract and output o, an ordinary
signature on M under PK.

Besides the ordinary notions of signature security in the signature component, we require three
security properties of verifiably encrypted signatures: validity, unforgeability, and opacity. We
describe these properties in the single user setting.

Validity requires that verifiably encrypted signatures verify, and that adjudicated verifiably
encrypted signatures verify as ordinary signatures, i.e., that VESigVerify(M, VESigCreate(M)) and
Verify(M, Adjudicate( VESigCreate(M)) hold for all M and for all properly-generated keypairs and
adjudicator keypairs. (The keys provided to the algorithms are here omitted for brevity.)

Unforgeability requires that it be difficult to forge a valid verifiably encrypted signature. The
advantage in existentially forging a verifiably encrypted signature of an algorithm F, given access
to a verifiably-encrypted-signature creation oracle S and an adjudication oracle A, along with a
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hash oracle, is

VESigVerify(PK, APK, M,w) = valid :
R
. PK, SK) & KeyGen,
AdvVSigF » % Pr (PK, SK) = KeyGen
(APK, ASK) — AdjKeyGen,
(M,w) & FSA(PK, APK)

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles, and
of the forger. The forger is additionally constrained in that its forgery on M must be nontrivial: It
must not previously have queried either oracle at M. Note that an ordinary signing oracle is not
provided; it can be simulated by a call to S followed by a call to A.

Definition 4.1. A verifiably encrypted signature forger F (t, qu,qs, qa, €)-forges a verifiably en-
crypted signature if: Algorithm F runs in time at most ¢; F makes at most g5 queries to the hash
function, at most gs queries to the verifiably-encrypted-signature creation oracle S, at most g,
queries to the adjudication oracle A; and Adv VSigF ~ is at least €. A verifiably encrypted signature
scheme is (¢, qu, gs, qa, €)-secure against existential forgery if no forger (¢, qu, gs, ¢4, €)-breaks it.

Opacity requires that it be difficult, given a verifiably encrypted signature, to extract an ordinary
signature on the same message. The advantage in extracting a verifiably encrypted signature of an
algorithm &, given access to a verifiably-encrypted-signature creation oracle S and an adjudication
oracle A, along with a hash oracle, is

Verify(PK, M,o) = valid :
(PK, SK) & KeyGen,
(APK, ASK) & AdjKeyGen,
(M, o) & £5A(PK, APK)

Adv VSigEe < Pr

The probability is taken over the coin tosses of the key-generation algorithms, of the oracles, and of
the forger. The extraction must be nontrivial: the adversary must not have queried the adjudication
oracle A at M. (It is allowed, however, to query S at M.) Verifiably encrypted signature extraction
is thus no more difficult than forgery in the underlying signature scheme.

Definition 4.2. An algorithm & (¢, qu, gs, a, €)-extracts a verifiably encrypted signature if £ runs
in time at most ¢, makes at most ¢y queries to the hash function, at most gs queries to the
verifiably-encrypted-signature creation oracle S, at most ¢, queries to the adjudication oracle, and
Adv VSigE, is at least e. A verifiably encrypted signature scheme is (t, qx, ¢s, ¢4, €)-secure against
extraction if no algorithm (¢, qu, gs, ¢4, €)-extracts it.

4.2 Aggregate Extraction

Our verifiably encrypted signature scheme depends on the assumption that given an aggregate
signature of k signatures it is difficult to extract the individual signatures.

Consider the bilinear aggregate signature scheme on a group pair (G1,G2). We posit that it is
difficult to recover the individual signatures o; given their aggregate o, the public keys, and the
message hashes. In fact, we posit that it is difficult to recover an aggregate o’ of any proper subset
of the signatures. This we term the k-element aggregate extraction problem.
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We formalize this assumption as follows. Let (G1,G2) be a bilinear group pair for co-Diffie-
Hellman, each of order p, with respective generators g7 and g2, a computable isomorphism ) :
G2 — G such that g1 = ¥(g2), and a computable bilinear map e : G1 x Gy — Gr.

Consider a k-user aggregate in this setting. Each user has a private key z; € Z, and a public
key v; = g5 € Ga. Each user selects a distinct message M; € {0,1}* whose hash is h; € Gy and
creates a signature o; = h;' € G1. Finally, the signatures are aggregated, yielding o = [, 0; € G1.

Let I be the set {1,...,k}. Each public key v; can be expressed as g5°, each hash h; as g}*, each
signature o; as g7*¥", and the aggregate signature o as gf, where z = Y, _; z;3;. The advantage of
an algorithm &£ in extracting a subaggregate from a k-element aggregate is

DA CI)A (0! = ggziel’ l’iyi)) :

def .
Adv k-Extrg = Pr L1y s YLy e U X L, 0 e gliET ")

1 9
(0!, 1) & E(g3h ... g5* gt gt o)
The probability is taken over the choices of all x; and y;, and the coin tosses of £.

Definition 4.3. An algorithm & (¢, k, €)-extracts a subaggregate from an k-element bilinear ag-
gregate signature if £ runs in time at most ¢t and Adv k-Extrg is at least e. An instantiation of the
bilinear aggregate signature scheme is (t, k, €)-secure against aggregate extraction if no algorithm
(t, k, €)-extracts it.

We will be particularly concerned with the case k = 2. In this case, the aggregate extraction
problem reduces to this one: given g4, g5, g¥, ¢, and gi”“b”, calculate gf*. (If the extractor
outputs g% instead, we may recover g¢* as g2 tov/gbv))

4.3 Verifiably Encrypted Signatures via Aggregation

We motivate our construction for verifiably encrypted signatures by considering aggregate signa-
tures as a launching point. An aggregate signature scheme can give rise to a verifiably encrypted
signature scheme if it is difficult to extract individual signatures from an aggregate, but easy to
forge existentially under the adjudicator’s key. Consider the following:

1. Alice wishes to create a verifiably encrypted signature, which Bob will verify; Carol is the ad-
judicator. Alice and Carol’s keys are both generated under the underlying signature scheme’s
key-generation algorithm.

2. Alice creates a signature ¢ on M under her public key. She forges a signature ¢’ on some
random message M’ under Carol’s public key. She then combines o and o', obtaining an
aggregate w. The verifiably encrypted signature is the pair (w, M").

3. Bob validates Alice’s verifiably encrypted signature (w, M’) on M by checking that w is a
valid aggregate signature by Alice on M and by Carol on M’.

4. Carol adjudicates, given a verifiably encrypted signature (w, M’) on M by Alice, by computing
a signature ¢’ on M’ under her key, and removing ¢’ from the aggregate; what remains is
Alice’s ordinary signature o.

In the bilinear aggregate signature scheme, it is difficult to extract individual signatures, under
the aggregate extraction assumption. Moreover, existential forgery is easy when the random oracle
hash function is set aside: Given a public key v € G and r € Zj, 1(v)" is a valid signature on a
message whose hash is 1(g2)" = ¢7. Below, we formalize and prove the security of the verifiably
encrypted signature scheme created in this way.
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4.4 The Bilinear Verifiably-Encrypted Signature Scheme

The bilinear verifiably encrypted signature scheme is built on the bilinear aggregate signature
scheme of the previous section. It shares the key-generation algorithm with the underlying aggregate
scheme. Moreover, the adjudicator’s public and private information is simply an aggregate-signature
keypair. The scheme comprises the seven algorithms described below:

Key Generation. KeyGen and AdjKeyGen are the same as KeyGen in the co-GDH signature
scheme.

Signing, Verification. Sign and Verify are the same as in the co-GDH signature scheme.

VESig Creation. Given a secret key z € Z,, a message M € {0,1}*, and an adjudicator’s public
key v' € Gg, compute h «— H(M), where h € Gy, and o «— h*. Select r at random from Z,
and set < 1(g2)" and o’ «— (v')". Aggregate o and ¢’ as w < oo’ € Gy. The verifiably
encrypted signature is the pair (w, u). (This can also be viewed as ElGamal encryption of o
under the adjudicator’s key.)

VESig Verification. Given a public key v, a message M, an adjudicator’s public key v’, and a
verifiably encrypted signature (w,p), set h « H(M); accept if e(w,g2) = e(h,v) - e(u, ')
holds.

Adjudication. Given an adjudicator’s public key v' and corresponding private key 2’ € Z,, a
certified public key v, and a verifiably encrypted signature (w, 1) on some message M, ensure
that the verifiably encrypted signature is valid; then output o = w/ ,ux,.

If the adjudicator does not first validate a purported verifiably encrypted signature, a malicious user
can trick him into signing arbitrary messages under his adjudication key. Similarly, the adjudicator
should only adjudicate for certified public keys v; we assume that the CA, in issuing a certificate
on v, verifies that the user knows the private key for v.

It is easy to see that validity holds. A verifiably encrypted signature correctly validates under
VESigVerify, which is simply the aggregate signature verification algorithm. Moreover, for any valid
verifiably encrypted signature, e(w/u® , g2) = e(w, g2) - e(p, g2) ™ = e(h,v) - e(p, V') - e(p,v') "1 =
e(h,v), so the output of Adjudicate is a valid signature on message M under the key v.

The next two theorems prove the unforgeability and opacity of the scheme.

Theorem 4.4. Let Gy and Go be cyclic groups of prime order p, with respective generators g1 and
go, with a computable bilinear map e : G1 X Go — Gr. Suppose that the co-GDH signature scheme
is (t', ¢y, q, € )-secure against existential forgery on (G1,G2). Then the bilinear verifiably encrypted
signature scheme is (t,qu, s, qa, €)-secure against existential forgery on (G1,G2), for all gy < ¢},
qs < q5, € > €, and all t satisfying t <t' — 2cq, (s +qa +1) , where exponentiation and inversion
on G1 take time cg,.

Proof. Given a verifiably-encrypted-signature forger algorithm V), we construct a forger algorithm F
for the underlying co-GDH signature scheme.

We assume that V is well-behaved in the sense that it always requests the hash of a message M
before it requests a verifiably encrypted signature or an adjudication involving M, and that it
never requests adjudication on a message M on which it had not previously asked for a verifiably
encrypted signature. It is trivial to modify any forger algorithm V to have the first property. The
second property is reasonable since the input to the adjudication oracle in this case would be a
nontrivial verifiably encrypted signature forgery; V can be modified simply to output it and halt.
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The co-GDH forger F is given a public key v, and has access to a signing oracle for v and a
hash oracle. It simulates the challenger and runs interacts with V as follows.

Setup. Algorithm F generates a key, (z/,v’) & KeyGen, which serves as the adjudicator’s key.
Now F runs V, providing as input the public keys v and v’.

Hash Queries. Algorithm V requests a hash on some string M. Algorithm F makes a query on M
to its own hash oracle, receiving some value h € G1, with which it responds to V’s query.

VerSig Creation Queries. Algorithm V requests a signature on some string M. (It will have
already queried the hash oracle at M.) F queries its signing oracle (for v) at M, obtaining
o € Gy. It then selects r at random from Z,, and returns to V the pair (o - 9 (v')",1¥(g2)").

Adjudication Queries. Algorithm V requests adjudication for (w, 1), a verifiably encrypted sig-
nature on a message M under key v and adjudicator key v’. Algorithm F checks that the
verifiably encrypted signature is valid, then returns w/ /ﬂ/.

Output. Finally, V halts, either declaring failure, in which case F, too, declares failure and halts,
or providing a valid and nontrivial verifiably encrypted signature (w*, u*) on a message M™*.
F sets o* — w?*/ (u*)zl which, by the validity property, is a valid co-GDH signature on M*
under key v.

That the forgery is nontrivial means that V did not query the verifiably encrypted signature
oracle at M™, from which it follows that F did not query its signing oracle at M*. Thus
(M*,0%) is a nontrivial co-GDH forgery; algorithm F outputs it and halts.

It remains only to analyze the success probability and running time of F. Algorithm F succeeds
whenever V does, that is, with probability at least e.

Algorithm F’s running time is the same as V’s running time plus the time it takes to respond
to gy hash queries, ¢4 verifiably-encrypted signature queries, and ¢, adjudication queries, and the
time to transform V’s final verifiably-encrypted signature forgery into a co-GDH signature forgery.
Hash queries impose no overhead. Each verifiably-encrypted signature query requires F to perform
two exponentiations in G1. Each adjudication query requires F to perform an exponentiation and
an inversion in G;. The output phase also requires an exponentiation and an inversion. We assume
that exponentiation and inversion in G'1 take time cg,. Hence, the total running time is at most
t+ 2cq, (gs +qa + 1).

JF queries its hash oracle whenever V queries its hash oracle, and its signing oracle whenever V
queries its verifiably encrypted signature oracle.

Combining all this, we see that if V (¢, qu, s, qa, €)-forges a bilinear verifiably encrypted signa-
ture on (G1,Ga), then F (t + 2¢q, (s + g4 + 1), qu, s, €)-breaks the co-GDH signature scheme on
(G1,G2). Conversely, if the co-GDH signature scheme is (¢, ¢}, ¢%, €')-secure, then the bilinear ver-
ifiably encrypted signature scheme is (t' — 2¢s, (s + qa + 1), ¢}, 45, a, €' )-secure against existential
forgery. O

Theorem 4.5. Let Gy and Gy be cyclic groups of prime order p, with respective generators g1 and
g2, with a computable isomorphism v : Go — G1 such that ¥ (g2) = g1 and a computable bilinear
map e : Gy x Gy — Gp. Suppose that the bilinear aggregate signature scheme on (G1,G2) is
(t',2,€)-secure against aggregate extraction. Then the bilinear verifiably encrypted signature scheme
is (t,qu, qs, qa, €)-secure against extraction on (G, G2) for allt and € satisfying

e>e(qga+1)-€ and tSt,_CGl(qH+4qs+2(IA+3) )
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where e is the base of natural logarithms, and exponentiation and inversion on G take time cg,.

Proof. Given a verifiably-encrypted-signature extractor algorithm V, we construct an aggregate ex-
tractor algorithm A. The co-GDH forger A is given values ¢ and gg in Ga, g7, g9, and gf”+ﬁ %in Gy.
It runs V, answering its oracle calls, and uses V’s verifiably encrypted signature extraction to cal-
culate g7, the answer to its own extraction challenge.

Let g1 be a generator of G1, and g2 of Ga, such that 1(g2) = g1. Algorithm A is given ¢, gg € Go
and g7, ¢, g‘1w+ﬁ % € Gy. Tts goal is to output g1 € Gy. Algorithm A simulates the challenger and

interacts with verifiably-encrypted-signature extractor V as follows.

Setup. Algorithm A sets v < ¢¢, the signer’s public key, and v’ «— gg , the adjudicator’s public
key. It gives v and v to V.

Hash Queries. At any time algorithm V can query the random oracle H. To respond to these
queries, A maintains a list of tuples (M@ w® b c®) as explained below. We refer to
this list as the H-list. The list is initially empty. When V queries the oracle H at a point
M € {0, 1}*, algorithm A responds as follows:

1. If the query M already appears on the H-list in some tuple (M, w, b, ¢) then algorithm A
responds with H(M) = w € Gy.

2. Otherwise, A generates a random coin ¢ € {0,1} so that Prjc=0] =1/(qa + 1).

3. Algorithm A picks a random b € Z,. If ¢ = 0 holds, A computes w «— g] - g% € Gy. If
¢ =1 holds, A computes w « g} € G.

4. Algorithm A adds the tuple (M, w,b,c) to the H-list and responds to V as H(M) = w.

VerSig Creation Queries. V requests a verifiably-encrypted signature on some string M under
challenge key v and adjudicator key v’. Algorithm A responds to this query as follows:

1. Algorithm A runs the above algorithm for responding to H-queries on M, obtaining the
corresponding tuple (M, w, b, c) on the H-list.

2. A selects z at random from Z,. If ¢ equals 0, A computes and returns (w, ) = (¢(g5)° -

g?v-h@é : w(gg)x,g? - g¥). If ¢ equals 1, A computes and returns (w,u) = (¥(g$)" -

w(gg )*,g5). It is easy to verify that (e, p) is in either case a correct verifiably encrypted

signature on the message with hash w.

Adjudication Queries. Algorithm V requests adjudication for (w, i), a verifiably encrypted sig-
nature on a message M under key v and adjudicator key v’. Algorithm A responds to this
query as follows:

1. Algorithm A runs the above algorithm for responding to H-queries on M, obtaining the
corresponding tuple (M, w, b, ¢) on the H-list.

2. Algorithm A checks that the verifiably encrypted signature is valid. If it is not, A
returns %, a placeholder value.

3. If ¢ equals 0, A declares failure and halts. Otherwise, it computes and returns o «
P(g9)b. Tt is easy to verify that o is the correct co-GDH signature under key v on the
message with hash w.
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Output. Finally, V halts. It either concedes failure, in which case so does A, or returns a nontrivial
extracted signature o* on some message M*. For the extraction to be nontrivial, V must not
have asked for adjudication on a verifiably encrypted signature of M*. Algorithm A runs its
hash algorithm at M*, obtaining the k corresponding tuples (M*, w*,b*, c*) on the H-list.

A now proceeds only if ¢* = 0; otherwise it declares failure and halts. Since ¢* = 0, it follows
that w* = g} - g¥". The extracted signature o* must satisfy the co-GDH verification equation,
e(c*, g2) = e(h*,v). A sets o0 «— ¢*/¢(v)®". Then

e(o,92) = e(0%,g2) e(¥(v),92) " = e(w*,v) - e(e(g2),v) "
= e(g],v) - e(gr,v)” - e(g1,0)™" =e(g],95).

Where in the last equality we substitute v = ¢g§. Thus (g2,95,9{,0) is a valid co-Diffie-
Hellman tuple, so o equals g5, the answer to the aggregate extraction problem; algorithm A
outputs it and halts.

This completes the description of algorithm A. It remains to show that A solves the given instance
of the aggregate extraction problem on (G1,G2) with probability at least €. To do so, we analyze
the three events needed for A to succeed:

&1: A does not abort as a result of any of V’s adjudication queries.
Ey: V generates a valid and nontrivial verifiably-encrypted signature extraction (M*,c*).

&s: Event & occurs, and ¢* = 0 holds, where ¢* is the c-component of the tuple containing M* on
the H-list.

A succeeds if all of these events happen. The probability Pr[€; A €3] decomposes as
Pl"[gl AN 53} = Pl“[gl] . PT[EQ | 51] . Pl”[gg | E1 N 52] (2)

The following claims give a lower bound for each of these terms.

Claim 4.6. The probability that algorithm A does not abort as a result of V’s adjudication queries
is at least 1/e. Hence, Pr[&1] > 1/e.

Proof. Without loss of generality we assume that )V does not ask for adjudication of the same
message twice. We prove by induction that after V makes ¢ signature queries the probability
that A does not abort is at least (1 — 1/(g4 + 1))*. The claim is trivially true for £ = 0. Let V'’s
£’th adjudication query be for verifiably encrypted signature (w(e), u(f)), on message M under the
challenge key v, and let (M 0 w® pO c(£)> be the corresponding tuple on the H-list. Then prior to
issuing the query, the bit ¢¥) is independent of V’s view — the only values that could be given to V
that depend on ¢ are H (M (g)) and verifiably-encrypted signatures on M, but the distributions
on these values are the same whether ¢) = 0 or ¢ = 1. Therefore, the probability that this query
causes A to abort is at most 1/(¢4 + 1). Using the inductive hypothesis and the independence of
9, the probability that .4 does not abort after this query is at least (1 —1/(g4 +1))¢. This proves
the inductive claim. Since V makes at most ¢, adjudication queries the probability that A does
not abort as a result of all signature queries is at least (1 —1/(gs +1))94 > 1/e. O

Claim 4.7. If algorithm A does not abort as a result of V’s adjudication queries then V’s view is
identical to its view in the real attack. Hence, Pr[€ | £1] > €.
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Proof. The challenge public key v given to V is from the same distribution as public keys produced
by KeyGen; the adjudicator’s public key v' given to V is from the same distribution as the adju-
dicator keys produces by AdjKeyGen. Responses to hash queries are as in the real attack since
each response is uniformly and independently distributed in GG1. Responses to verifiably-encrypted
signature queries are also as in the real attack: They are valid, and their @ components are uni-
formly and independently distributed in G1. Since A did not abort as a result of V’s adjudication
queries, all its responses to those queries are valid. Therefore V will produce a valid and nontrivial
verifiably-encrypted signature extraction with probability at least e. Hence Pr[€s | £1] > €. O

Claim 4.8. The probability that algorithm A does not abort after V outputs a valid and nontrivial
verifiably-encrypted signature extraction is at least 1/(qa + 1) Hence, Pr[€3 | E1 N E2] > 1/(qa + 1).

Proof. Given that events & and & happened, algorithm A will abort only if }V generates a forgery
(M*,0*) for which the tuple (M* w* b* ¢*) on the H-list has ¢ = 1. Since its extraction is
nontrivial, ¥ could not have requested adjudication on any verifiably encrypted signature on M*,
and ¢* must be independent of V’s current view. Therefore Pr[c* = 0| &1 A&] > 1/(qs + 1) as
required. O

Using the bounds from the claims above in equation (2) shows that A produces the correct
answer with probability at least €/e(gs + 1) > € as required.

Algorithm A’s running time is the same as V’s running time plus the time is takes to respond to
A’s oracle queries and to transform V’s verifiably-encrypted signature extraction into an aggregate
extraction. Each verifiably-encrypted signature query, each adjudication query, and the output
phase requires A to run its H-algorithm. It must therefore run this algorithm (¢4 +¢s+ga+1) times.
Each run requires an exponentiation in GG;. Algorithm A must run its verifiably-encrypted signing
algorithm ¢g times, and each run requires at most three exponentiation in GG;. Finally, A’s output
phase requires at most one exponentiation and one inversion in G;. We assume that exponentiation
and inversion in G take time cg,. Hence, the total running time is at most t + cq, (qu + 4gs +
2q4 + 3) < ' as required. O

4.5 Observations on Verifiably Encrypted Signatures

We note some extensions of the verifiably encrypted signature scheme discussed above. Some of
these rely for security on the k-element aggregate extraction assumption with k > 2.

e Anyone can convert an ordinary unencrypted signature to a verifiably encrypted signature.
The same applies to unencrypted aggregate signatures.

e An adjudicator’s private key can be shared amongst n parties using k-of-n threshold cryp-
tography [12, 11], so that k parties are needed to adjudicate a verifiably encrypted signature.

e A message-signature pair in the co-GDH signature scheme is of the same form as an identity—
private-key pair in the Boneh-Franklin Identity-Based Encryption Scheme [5]. Thus the veri-
fiably encrypted signature scheme can potentially be modified to yield a verifiably encrypted
encryption scheme for IBE private keys. Verifiably encrypted private keys have many appli-
cations [27].
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5 Ring Signatures

Rivest, Shamir and Tauman define ring signature schemes and construct some using RSA and
Rabin cryptosystems [28]. Naor defines the closely-related notion of deniable ring authentication
and proposes such a scheme that relies only on the existence of a strong encryption function [23].
We shall see that co-GDH signatures give rise to natural ring signatures.

5.1 Ring Signatures

Consider a set U of users. Each user u € U has a signing keypair (PK,, SK,). A ring signature
on U is a signature that is constructed using all the public keys of the users in U, and a single
private key of any user in U. A ring signature has the property that a verifier is convinced that the
signature was produced using one of the private keys of U, but is not able to determine which one.
This property is called signer-ambiguity [28]. Applications for ring signatures include authenticated
(yet repudiable) communication and leaking secrets [28].

Zhang and Kim [29] devised a bilinear ring signature in an identity-based setting. Our scheme
differs from theirs, as our goal is to extend co-GDH signatures to obtain efficient ring signatures;
the system parameters and key generation algorithm in our system are identical to those of the
co-GDH scheme.

5.2 Bilinear Ring Signatures

The ring signature scheme comprises three algorithms: KeyGen, RingSign, and RingVerify. Recall
g1, ge are generators of groups G1, Go respectively, and e : G; X Gy — G is a bilinear map, and a
computable isomorphism ¢ : Go — G exists, with ¥(g2) = ¢1. Again we use a full-domain hash
function H : {0,1}* — G;. The security analysis views H as a random oracle.

Key Generation. For a particular user, pick random x & Zyp, and compute v < g5. The user’s
public key is v € G2. The user’s secret key is x € Z,,.

Ring Signing. Given public keys v1,...,v, € G2, a message M € {0,1}*, and a private key =

corresponding to one of the public keys vs for some s, choose random a; & Zy, for all i # s.
Compute h «— H(M) € Gy and set

1/x
O (h/@b(vaZ)) .
1#£s
For all i # s let o; < g7*. Output the ring signature o = (01, ...,05) € GT.

Ring Verification. Given public keys v1,...,v, € G2, a message M € {0,1}*, and a ring signa-
ture o, compute h — H (M) and verify that e(h, g2) = [\, e(os, vi).

Using the bilinearity and nondegeneracy of the pairing e, it is easy to show that a signature
produced by the RingSign algorithm will verify under the RingVerify algorithm.
5.3 Security

There are two aspects a security analysis for ring signatures we must consider. Firstly, signer
ambiguity must be ensured. We show that the identity of the signer is unconditionally protected.
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Theorem 5.1. For any algorithm A, any set of users U, and a random u € U, the probability
Pr[A(c) = u] is at most 1/|U|, where o is any ring signature on U generated with private key SK,.

Proof. The theorem follows from a simple probability argument: for any h € G, and any s,
1 < s < mn, the distribution {gi*,...,97" : a; & Zy for i # s,as chosen such that [[;" | g" = h} is
identical to the distribution {g7*,..., 97" : [\, 97" = h}, since the value of any one of the a;’s is
uniquely determined by the values of the other a;’s. O

Secondly, we need to examine the scheme’s resistance to forgery. We adopt the security model
of Rivest, Shamir and Tauman [28]. Consider the following game played between an adversary and
a challenger. The adversary is given the public keys vy,...,v, of a set of users U, and is given
oracle access to h and a ring-signing oracle. The adversary may work adaptively. The goal of the
adversary is to output a valid ring signature on U of a message M subject to the condition that
M has never been presented to the ring-signing oracle. An adversary A’s advantage Adv RingSig 4
in existentially forging a bilinear ring signature is the probability, taken over the coin tosses of the
key-generation algorithm and of the forger, that A succeeds in creating a valid ring signature in
the above game.

Theorem 5.2. Suppose F is a (t',€')-algorithm that can produce a forgery of a ring signature on a
set of users of size n. Then there exists an (t, €)-algorithm that can solve the co-CDH problem where
t <2t + 2cq,(2n + qu +ngs) and € > ((€'/e)(1 + qs))?, where F issues at most qs ring-signature
queries and at most qi hash queries, and exponentiation and inversion on Go take time cg,.

Proof. The co- CDH problem can be solved by first solving two random instances of the following
problem: Given g1 , g5 (and g1, g2), compute gll’. We shall construct an algorithm A that solves
this problem. This is easy if a = 0. In what follows, we assume a # 0.

Initially A picks z9,...,z, at random from Z, and sets z; = 1. It sets v; = (g5)"". Algorithm
F is given the public keys v, ..., v,. Without loss of generality we may assume F submits distinct
queries (as previous replies can be cached); that for every ring-signing query on a message M, F
has previously issued a hash query for M; and that F issues a hash query on the message on which
it attempts to forge a signature some time before giving its final output.

On a hash query, A flips a coin that shows 0 with probability p and 1 otherwise (p shall be

determined later). Then A picks a random r & Zy, and if the coins shows 0, A returns (gfb)”,
otherwise it returns ¥ (g9)".
Suppose F issues a ring sign query for a message M. By assumption, A has previously issued a

hash query for M. If the coin A flipped for this h-query showed 0, then A fails and exits. Otherwise

A had returned H(M) = 1(g5)" for some r. In this case A chooses random as,...,a, pid Ly,

computes a; = r — (agx2 + ...+ apxy,), and returns the signature o = (g7, ..., g{").

Eventually F outputs a forgery (o1,...,0,) for a message M. Again by assumption, F has
previously issued a h-query for M. If the coin flipped by A for this query did not show 0 then A
fails. Otherwise H(M) = g for some r chosen by A, and A outputs the rth root of 71092 ... 7,%".

Algorithm F cannot distinguish between A’s simulation and real life. Also, A will not fail with
probability p?(1 — p) which is maximized when p = ¢5/(¢s + 1), giving a bound of (1/e)(1 + gs).
If it does not fail and F successfully forges a ring signature then A is successful and outputs glf.
Algorithm A requires n exponentiations on G5 in setup, one exponentiation for each of F’s hash
queries, n exponentiations for each of F’s signature queries, and n exponentiations in the output
phase, so its running time is F’s running time plus cq, (2n + ¢y + ngs). O
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5.4 Observations on Ring Signatures

Any ring signature scheme restricts to an ordinary signature scheme when n = 1. Our scheme
restricts to a short signature scheme similar to the co-GDH scheme [6]. In this modified co-GDH
scheme, o equals h'/* rather than h*, and one verifies that e(h,gs) = e(o,v) rather than that
e(a,g2) = e(h,v).

Bresson et al. [7] extend Rivest-Shamir-Tauman ring signatures to obtain threshold and ad-hoc
ring signatures. However, bilinear ring signatures have interesting properties that do not appear
to be shared by ring signatures in general. For any set of users U with u € U, anyone can convert
a modified co-GDH signature by u into a ring signature by U. Specifically, to convert a modified
co-GDH signature o1 on M for public key v; into a ring signature o = (04,...,0,,) on M for public

R . ) .
keys v1,...,v,, we choose r; — Z, for 2 < i < n, and set o} «— o1 [[;_,¥(v;*) and o} «— ¢(v] ")

for 2 < ¢ < n. More generally, anyone can further anonymize a ring signature by adding users to
U.

6 Conclusions

We introduced the concept of aggregate signatures and constructed an efficient aggregate signature
scheme based on bilinear maps. Key generation, aggregation, and verification require no interaction.
We proved security of the system in a model that gives the adversary his choice of public keys and
messages to forge. For security, we introduced the additional constraint that an aggregate signature
is valid only if it is an aggregation of signatures on distinct messages. This constraint is satisfied
naturally for the applications we have in mind. More generally, the constraint can be satisfied by
prepending the public key to the message prior to signing.

We gave several applications for aggregate signatures. For example, they can be used to reduce
the size of certificate chains and reduce communication bandwidth in protocols such as SBGP. We
also showed that our specific aggregate signature scheme gives verifiably encrypted signatures.

Previous signature constructions using bilinear maps [6, 19, 8, 4] only required a gap Diffie-
Hellman group (i.e., DDH easy, but CDH hard). The signature constructions in this paper require
the extra structure provided by the bilinear map. These constructions are an example where a
bilinear map provides more power than a generic gap Diffie-Hellman group.
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Abstract

We describe a short signature scheme which is existentially unforgeable under a chosen
message attack without using random oracles. The security of our scheme depends on a new
complexity assumption we call the Strong Diffie-Hellman assumption. This assumption has
similar properties to the Strong RSA assumption, hence the name. Strong RSA was previously
used to construct signature schemes without random oracles. However, signatures generated by
our scheme are much shorter and simpler than signatures from schemes based on Strong RSA.
Furthermore, our scheme provides a limited form of message recovery.

1 Introduction

Boneh, Lynn, and Shacham (BLS) [BLSO01] recently proposed a short digital signature scheme
where signatures are about half the size of DSA signatures with the same level of security. Security
is based on the Computational Diffie-Hellman (CDH) assumption on certain elliptic curves. The
scheme is shown to be existentially unforgeable under a chosen message attack in the random oracle
model [BR93].

In this paper we describe a signature scheme where signatures are almost as short as BLS signa-
tures, but whose security does not require random oracles. We prove security of our scheme using
a complexity assumption we call the Strong Diffie-Hellman assumption, or SDH for short. Roughly
speaking, the ¢-SDH assumption in a group G of prime order p states that the following problem
is intractable: given g,gm,g($2),...,g($q) € G as input, output a pair (¢, g/@+9)) where ¢ € Ly.
Precise definitions are given in Section 2.3. Using this assumption we construct a signature scheme
that is existentially unforgeable under a chosen message attack without using random oracles.

Currently, the most practical signature schemes secure without random oracles [GHR99, CS00]
are based on the Strong RSA assumption (given an RSA modulus N and s € Z} it is difficult
to construct a non-trivial pair (¢, s'/¢) where ¢ € Z). Roughly speaking, what makes Strong RSA
so useful for constructing secure signature schemes is the following property: given a Strong RSA
problem instance (N, s) it is possible to construct a new instance (N, s’) with ¢ known solutions
(ci, (8)V/¢), where the construction of any other solution (c, (s')'/¢) makes it possible to solve the
original problem instance. This property provides a way to prove security against a chosen message
attack. In Section 3.1 we show that the ¢-SDH problem has a similar property. Hence, ¢-SDH may
be viewed as a discrete logarithm analogue of the Strong RSA assumption. We believe that the
properties of ¢-SDH make it a useful tool for constructing cryptographic systems and we expect to
see many other systems based on it.

To gain some confidence in the ¢-SDH assumption we provide in Section 5 a lower bound on
the computational complexity of solving the ¢-SDH problem in a generic group model. This shows
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that no generic attack on ¢-SDH is possible. Mitsunari, Sakai, and Kasahara [MSKO02] previously
used a weaker variant of the ¢-SDH assumption to construct a traitor tracing scheme. The ideas in
their paper are nice, and we use some of them here. However, their application to tracing traitors
appears to be insecure [TSNZ03].

We present our secure signature scheme in Section 3 and prove its security against existential
forgery under chosen message attack. The resulting signatures are as short as DSA signatures, but
are provably secure in the absence of random oracles. Our signatures also support limited message
recovery, which makes it possible to further reduce the total length of a message/signature pair. In
Section 4 we show that with random oracles the ¢-SDH assumption gives even shorter signatures.
A related system using random oracles was recently described by Zhang et al. [ZSNS04].

We refer to [BLS01] for applications of short signatures. We only mention that short digital
signatures are needed in environments with stringent bandwidth constraints, such as bar-coded
digital signatures on postage stamps [NS00, PV00]. We also note that Patarin et al. [PCGO1,
CDFO03] construct short signatures whose security depends on the Hidden Field Equation (HFE)
problem.

2 Preliminaries

Before presenting our results we briefly review two notions of security for signature schemes, review
the definition for groups equipped with a bilinear map, and precisely state the ¢-SDH assumption.

2.1 Secure Signature Schemes

A signature scheme is made up of three algorithms, KeyGen, Sign, and Verify, for generating keys,
signing, and verifying signatures, respectively.

Strong Existential Unforgeability

The standard notion of security for a signature scheme is called existential unforgeability under a
chosen message attack [GMRS88]. We consider a slightly stronger notion of security, called strong
existential unforgeability [ADR02], which is defined using the following game between a challenger
and an adversary A:

Setup: The challenger runs algorithm KeyGen to obtain a public key PK and a private
key SK. The adversary A is given PK.

Queries: Proceeding adaptively, A requests signatures on at most g5 messages of his choice
My, ...,M,, €{0,1}*, under PK. The challenger responds to each query with a signa-
ture o; = Sign(SK, M;).

Output: Eventually, .4 outputs a pair (M, o) and wins the game if
(1) (M,o) is not any of (My,01),...,(M,,, 04, ), and
(2) Verify(PK, M, o) = valid.

We define Adv Sig 4 to be the probability that .4 wins in the above game, taken over the coin tosses
made by A and the challenger.

Definition 2.1. A forger A (t, s, €)-breaks a signature scheme if A runs in time at most ¢, A makes
at most ¢s signature queries, and Adv Sig 4 is at least e. A signature scheme is (t, g, €)-existentially
unforgeable under an adaptive chosen message attack if no forger (¢, gs, €)-breaks it.
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When proving security in the random oracle model we add a fourth parameter g5 denoting an
upper bound on the number of queries that the adversary A makes to the random oracle.

We note that the definition above captures a stronger version of existential unforgeability than
the standard one: we require that the adversary cannot even generate a new signature on a pre-
viously signed message. This property is required for some applications [ADR02, Sah99, CHK04].
All our signature schemes satisfy this stronger security notion.

Weak Chosen Message Attacks

We will also use a weaker notion of security which we call existential unforgeability under a weak
chosen message attack. Here we require that the adversary submit all signature queries before
seeing the public key. This notion is defined using the following game between a challenger and an
adversary A:

Query: A sends the challenger a list of g5 messages My,..., M, € {0,1}*.
Response: The challenger runs algorithm KeyGen to generate a public key PK and private
key SK. Next, the challenger generates signatures o; = Sign(SK, M;) for i = 1,...,¢s.
The challenger then gives A the public key PK and the g¢s signatures o1, ..., 0q,.
Output: Algorithm 4 outputs a pair (M, o) and wins the game if
(1) M is not any of M, ..., M,,, and
(2) Verify(PK,M,o) = valid.

We define AdvW-Sig 4 to be the probability that A wins in the above game, taken over the coin
tosses of A and the challenger.

Definition 2.2. A forger A (¢, qs, €)-weakly breaks a signature scheme if A runs in time at most
t, A makes at most gs signature queries, and AdvW-Sig 4 is at least e. A signature scheme is
(t, s, €)-existentially unforgeable under a weak chosen message attack if no forger (¢, gs, €)-weakly
breaks it.

2.2 Bilinear Groups

Signature verification in our scheme requires a bilinear map. We briefly review the necessary facts
about bilinear maps and bilinear map groups. We follow the notation in [BLSO01]:

1. G1 and Gy are two (multiplicative) cyclic groups of prime order p;
2. g1 is a generator of G and gs is a generator of Go;

3. 1 is an isomorphism from Gy to Gy, with ¥(g2) = ¢1; and

4. e is a bilinear map e : G; X Gy — Gr.

For simplicity one can set G; = G2. However, as in [BLS01], we allow for the more general case
where Gy # G so that we can take advantage of certain families of elliptic curves to obtain short
signatures. Specifically, elements of G; have a short representation whereas elements of Go may
not. The proofs of security require an efficiently computable isomorphism v : Go — Gy. When
G1 = G2 and g1 = g9 one could take 1 to be the identity map. On elliptic curves we can use the
trace map as .

Let thus G; and Gz be two groups as above, with an additional group Gp such that |G| =
|G2| = |Gr|. A bilinear map is a map e : G; x Go2 — Gp with the following properties:

1. Bilinear: for all u € Gy,v € Go and a,b € Z, e(u®,v®) = e(u,v)®.
2. Non-degenerate: e(g1,g2) # 1.
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We say that (G1,Gy) are bilinear groups if there exists a group G, an isomorphism ¢ : Gy —
G1, and a bilinear map e : G; x Go — G as above, and e, 9, and the group action in Gy, Go, and
G can be computed efficiently.

Joux and Nguyen [JNO1] showed that an efficiently computable bilinear map e provides an
algorithm for solving the Decision Diffie-Hellman problem (DDH). Our results can be stated using
a generic algorithm for DDH. Nevertheless, for the sake of concreteness we instead describe our
results by directly referring to the bilinear map.

2.3 The Strong Diffie-Hellman Assumption

Before describing the new signature schemes, we first state precisely the hardness assumption on
which they are based. Let G1, Gy be two cyclic groups of prime order p, where possibly G; = Gs.
Let g1 be a generator of Gy and g a generator of Gg such that g1 = ¥(g2).

g-Strong Diffie-Hellman Problem. The ¢-SDH problem in (Gi,Gs2) is defined as follows:

2
given a (¢ + 2)-tuple (gl,gg,gg,gém ),...,gémq)) as input where as above g1 = (g2), output a

pair (e, g}/(HC)) where ¢ € Zy. An algorithm A has advantage ¢ in solving ¢-SDH in (G1, G2) if

1

q
Pr | Alg1, 92,95, 95") = (¢, g7 )| > €

where the probability is over the random choice of generator go € Go with g1 = 9(g2), the random
choice of z in Zj, and the random bits consumed by A.

Definition 2.3. We say that the (g, ¢, €)-SDH assumption holds in (G, G2) if no t-time algorithm
has advantage at least € in solving the ¢-SDH problem in (G, Gz2).

Occasionally we drop the ¢ and e and refer to the ¢-SDH assumption rather than the (q,t,€)-
SDH assumption. As we will see in the next section the ¢-SDH assumption has similar properties
to the Strong RSA problem and we therefore view ¢-SDH as a discrete logarithm analogue of the
Strong RSA assumption.

To provide some confidence in the ¢-SDH assumption, we prove in Section 5 a lower bound on
the complexity of solving the g-SDH problem in a generic group. Furthermore, we note that the
Strong Diffie-Hellman problem has a simple random self-reduction in (G1, Gz2).

A weaker version of the ¢-SDH assumption was previously used by Mitsunari, Sakai, and Kasa-
hara [MSKO02] to construct a traitor tracing system (see [TSNZ03] for an analysis). Using our
notation, their version of the assumption requires Algorithm A to output g%/ @+ for a given input
value c. In the assumption above we allow A to choose ¢. When c is pre-specified the ¢-SDH
problem is equivalent to the following problem: given (g1, g2, g5, g§2, ey g%q) output g%/ *. We note
that when A is allowed to choose ¢ no such equivalence is known.

3 Short Signatures Without Random Oracles

We now construct a fully secure short signature scheme in the standard model using the ¢-SDH
assumption. We consider this to be the main result of the paper.

Let (G1,Gz2) be bilinear groups where |G1| = |G2| = p for some prime p. For the moment we
assume that the messages m to be signed are elements in Z, but as we mention in Section 3.5, the
domain can be extended to all of {0,1}" using a collision resistant hash function H : {0,1}* — Z.
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Key generation: Pick a random generator g, € G2 and set g1 = ¥ (g2). Pick random x,y E Zy,
and compute u < g5 € Gy and v «— g§ € Gy. Also compute z < e(g1,g2) € Gp. The public
key is (g1, g2,u, v, z). The secret key is (x,y).

Signing: Given a secret key z,y € Z; and a message m € Z,, pick a random r € Z; and compute

o — g%/(m+m+m) € Gy. Here 1/(xz + m + yr) is computed modulo p. In the unlikely event
that = +m + yr = 0 we try again with a different random r. The signature is (o, 7).

Verification: Given a public key (g1, g2, u, v, z), a message m € Zy, and a signature (o,7), verify
that
e(o, u-g3'-v") =z

If the equality holds the result is valid; otherwise the result is invalid.

Public Key Integrity. Observe that the g; and z components of the public key can be computed
from other parts of the public key and are thus redundant. They are included in the public key
for efficiency reasons, in order to dispense the verifier from performing these computations. It is
up to the Certifying Authority (CA) to verify that the relations g1 = 1(g2) and z = e(g1, g2) hold
before issuing a certificate. Alternatively, the verifier can perform these checks when verifying the
certificate for a given public-key. Since this is a one-time check we do not explicitly include it in
the verification algorithm.

Signature Length. A signature contains two elements (o,7), each of length approximately
log,(p) bits, therefore the total signature length is approximately 2logy(p). When using the el-
liptic curves described in [BLS01] we obtain a signature whose length is approximately the same
as a DSA signature with the same security, but which is provably existentially unforgeable under
a chosen message attack without the random oracle model.

Performance. Key and signature generation times are comparable to BLS signatures. Verifica-
tion time is faster since verification requires only one pairing and one multi-exponentiation. The
value z = e(g1,g2) only needs to be computed (or verified) at certification time. In comparison,
BLS signature verification requires two pairing computations. Since exponentiation tends to be
significantly faster than pairing, signature verification is faster than in the BLS system.

Security. The following theorem shows that the scheme above is existentially unforgeable in the
strong sense under chosen message attacks, provided that the ¢-SDH assumption holds in (G, G2).

Theorem 3.1. Suppose the (q,t',€)-SDH assumption holds in (G1,Gs). Then the signature scheme
above is (t,qs, €)-secure against existential forgery under a chosen message attack provided that

gs < q, €>2(e + qs/p) = 2¢ and t<t — @(q2T)
where T is the mazimum time for an exponentiation in G1 and Gs.

Proof. We prove the theorem using two lemmas. In Lemma 3.2, we first describe a simplified
signature scheme and prove its existential unforgeability against weak chosen message attacks under
the ¢-SDH assumption. In Lemma 3.3, we then show that the security of the weak scheme implies
the security of the full scheme. From these results (Lemmas 3.2 and 3.3), Theorem 3.1 follows
easily. We present the proof in two steps since the construction used to prove Lemma 3.2 will be
used later on in the paper. O
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3.1 A Weakly Secure Short Signature Scheme

We first show how the ¢-SDH assumption can be used to construct an existentially unforgeable
scheme under a weak chosen message attack. This construction demonstrates the main properties
of the ¢-SDH assumption. In the next section we show that the security of this weak scheme implies
the security of the full scheme above.

The weakly secure short signature scheme is as follows. As before, let (G1,G2) be bilinear
groups where |G| = |Gz| = p for some prime p. For the moment we assume that the messages m
to be signed are elements in Z.

Key generation: Pick a random generator go € G2 and set g1 = ¥(g2). Pick random =z hid Zy,
and compute v «— g5 € G and z < e(g1, g2) € Gr. The public key is (g1, g2, v, z). The secret
key is x.

C e : 1/(z+m)
Signing: Given a secret key x € Z, and a message m € Z;, output the signature o < g; €

G1. Here 1/(z + m) is computed modulo p. By convention in this context we define 1/0 to
be 0 so that in the unlikely event that x +m = 0 we have o « 1.

*

»» and a signature o € G, verify

Verification: Given a public key (g1, g2, v, 2), a message m € Z
that

6(0—711 : ggn) =z

If equality holds output valid. If o =1 and v - g3* = 1 output valid.
Otherwise, output invalid.

We show that the basic signature scheme above is existentially unforgeable under a weak chosen
message attack. The proof of the following lemma uses a similar method to the proof of Theorem 3.5
of Mitsunari et al. [MSKO02].

Lemma 3.2. Suppose the (q,t',€)-SDH assumption holds in (G1,Gz). Then the basic signature
scheme above is (t,qs,€)-secure against existential forgery under a weak chosen message attack
provided that

gs < ¢ and t<t —O(T)

where T' is the mazimum time for an exponentiation in G1 and Gs.

Proof. Assume A is a forger that (¢, gs, €)-breaks the signature scheme. We construct an algorithm
B that, by interacting with A, solves the ¢-SDH problem in time ' with advantage e. Algorithm

B is given a random instance (g1, g2, A1, ..., Aq) of the ¢-SDH problem, where A; = gémz) € Gy for

i=1,...,q and for some unknown z € Z;. For convenience we set A9 = g2. Algorithm B’s goal is
to produce a pair (c, g}/ (x+c)) for some c € Z;,. Algorithm B does so by interacting with the forger

A as follows:

Query: Algorithm A outputs a list of distinct g5 messages my, ..., mg, € Z,, where g5 < g. Since
A must reveal its queries up front, we may assume that A outputs exactly ¢ — 1 messages to
be signed (if the actual number is less, we can always virtually reduce the value of ¢ so that

QZQS+1)-

Response: B must respond with a public key and signatures on the ¢ — 1 messages from A. Let
f(y) be the polynomial f(y) = Hf;ll(y + m;). Expand f(y) and write f(y) = g;& a;y’
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where ay, ..., aq—1 € Zj, are the coeflicients of the polynomial f(y). Compute:

q-1 q
g = [[A" =g and b [JA7" =g5" = ()"
=0 i=1

Also, let g7 = ¢¥(gh) and 2’ = e(g}, ¢5). The public key given to A is (¢}, g5, h, z’), which has
the correct distribution. Note that we may assume that f(x) # 0 since, otherwise, x = —m;
for some ¢ which means that B just obtained the secret key .

Next, for each i = 1,...q — 1, Algorithm B must generate a signature o; on m;. To do so, let
fi(y) be the polynomial f;(y) = f(y)/(y + m;) = HJ 1Héz( + mj). As before, we expand f;
and write f;(y) = E?;g B;y’. Compute

q—2
s = ot = gyson
Observe that o; = 1(S;) € Gy is a valid signature on m under the public key (g}, g5, h, ).

Algorithm B gives A the ¢ — 1 signatures oy, ...,04-1.

Output: Algorithm A returns a forgery (m., o,) such that o, € G is a valid signature on m, € Z;

and my & {m ..., mg_1} since there is only one valid signature per message. In other words,
e(os, b+ (95)™) = e(g), g5). Since h = (g5)” we have that e(ow, (95)"7™) = e(g7,95) and
therefore

Oy = (gll)l/(x-i-m*) - (gl)f(l’)/(l"‘rm*) (1)

Using long division we write the polynomial f as f(y) = v(y)(y+ms)+v_, for some polynomial
v(y) = ?:_02 viy* and some v_, € Z,. Then the rational fraction f(y)/(y-+m.) in the exponent
on the right side of Equation (1) can be written as

+ St
+ Z%y and hence Ox = glr+m* Y55 viw

fW)/(y+m.) =

+m*

Note that v, # 0, since f(y) = ;1;11(3/ +m;) and my & {ma,...,mg_1}, as thus (y + my)
does not divide f(y). Then algorithm B computes

q—2 /71 vt v 1/v-1
W — (0'* . H 1/}(141)%> <glz+m* s 0 Yi® H 9 ’sz) _ g}/(l‘—‘rm*)
=0

and returns (m.,w) as the solution to the ¢-SDH instance.

The claimed bounds are obvious by construction of the reduction. O

3.2 From Weak Security To Full Security

We now present a reduction from the security of the basic scheme of Lemma 3.2 to the security
of the full signature scheme described at the onset of Section 3. This will complete the proof of
Theorem 3.1.
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Lemma 3.3. Suppose that the basic signature scheme of Lemma 3.2 is (t',qs, € )-weakly secure.
Then the full signature scheme is (t,qs, €)-secure against existential forgery under a chosen message
attack provided that

€ > 2(¢ + qs/p) = 2¢ and t <t —0(qsT)
where T is the mazimum time for an exponentiation in G1 and Ga.

We first give some intuition for the proof. Suppose A is a forger for the full scheme under a
chosen message attack. We build a forger B for the weak scheme under a weak chosen message
attack. Forger B starts by requesting signatures on random messages w1, ..., w, € Z,. In response,
it is given a public key (g1, g2,u,2) and signatures o1,...,04, € G; for the weak scheme. In
principle, B could create a public key for the full scheme by picking a random y € Z, and giving A
the public key (g1, g2, u, g3, z). Now, when A issues a chosen message query for a message m; € Zy,
forger B could choose an r; € Z, such that m; 4+ yr; maps to w;. Then (o;,r;) is a valid signature
on m; for the full scheme and hence a proper response to A’s chosen message query. Eventually,
A outputs a forgery (mu, o4, 74). Then (my + yry, o4) is a valid message/signature pair for the
weak scheme. In principle, B could output this pair as its existential forgery on the weak scheme.
The problem is that m, + yr, might be in {wy,...,w,, } in which case (m. + yr., 04) is an invalid
existential forgery. Dealing with this case complicates the proof and forces us to consider two types
of adversaries. The full proof is given below.

Proof of Lemma 3.3. Assume A is a forger that (¢,qs,€)-breaks the full signature scheme. We
construct an algorithm B that (¢, qs, €/2 — qs/p)-weakly breaks the basic signature scheme of
Lemma 3.2.

Before describing Algorithm B we distinguish between two types of forgers that A can emulate.
Let (hi, h2,u,v, z) be the public key given to forger A where u = g5 and v = g3. Suppose A asks for
signatures on messages mi,...,mq, € Z, and is given signatures (04,7;) for i =1,...,qs on these
messages. Let w; = m; + yr; and let (m., o4, 74) be the forgery produced by A. We distinguish
between two types of forgers:

Type-1 forger: a forger that either

(i) makes a signature query for the message m = —zx, or

(ii) outputs a forgery where my + yry & {w1, ..., wy,}.
Type-2 forger: a forger that both

(i) never makes a signature query for the message m = —z, and

(ii) outputs a forgery where m, + yr. = w; for some i € {1,...,qs}.
We show that either forger can be used to forge signatures for the weak signature scheme of
Lemma 3.2. However, the reduction works differently for each forger type. Therefore, initially B
will choose a random bit c¢yede € {1,2} that indicates its guess for the type of forger that A will
emulate. The simulation proceeds differently for each mode.

We are now ready to describe Algorithm B. It produces a forgery for the signature scheme of

Lemma 3.2 as follows:

Setup: Algorithm B first picks a random bit cpege € {1,2}. Next, B sends to its own challenger
a list of gs random messages w1, ...,w,, € Zj for which it requests a signature. The chal-
lenger responds with a valid public key (g1, g2, u, 2) and signatures o1, ...,04, € G on these
messages. We know that e(oy, g5 u) = e(g1,92) = z forall i =1,...,gs. Then:

e (If cyode = 1). B picks a random y € Z;, and gives A the public key PK; = (g1, 92, u, gy, 2).
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e (If cmode = 2). B picks a random z € Z, and gives A the public key PKs = (g1, 92, 95, u, 2).

In either case, we note that B provides the adversary A with a valid public key (g1, g2, U, V, 2).

Signature queries: The forger A can issue up to gs signature queries in an adaptive fashion. In
order to respond, B maintains a list H-list of tuples (m;,r;, W;) and a query counter ¢ which
is initially set to 0. Upon receiving a signature query for m, Algorithm B increments ¢ by
one. Then:

o (If ¢pyode = 1). Check if g5 ™ = u. If so, then B just obtained the private key for the public
key (g1, 92, u,2) it was given, which allows it to forge the signature on any message of its
choice. At this point B successfully terminates the simulation.
Otherwise, set ry = (wy —m)/y € Z,. In the very unlikely event that 7, = 0, Algorithm B
reports failure and aborts. Otherwise, Algorithm B gives A the signature (oy, 7). This is a
valid signature on m under PK; since ry is uniform in Z; and

e(op, U-gy* - V™) =e(op, u-gy' - g5 *) = elog,u-gy") = e(g1,92) = 2

o (If cmode = 2). Set 1y = (x+m)/wy € Zy. 1f o = 0, Algorithm B reports failure and aborts.

Otherwise, give A the signature (Jl}/ "t 1rg). This is a valid signature on m under PKy since

r¢ is uniform in Z; and
1 1
eo)", U gy V™) = (o), g8 - g ) = elor, g5"u) = e(g1,92) = 2

In either case if B does not abort it responds with a valid signature on m.
In either case Algorithm B adds the tuple (m,rs, g5*'V") to the H-list.

Output: Eventually, A returns a forgery (ms,o.,7s), where (o4, 7,) is a valid forgery distinct
from any previously given signature on message my. Note that by adding dummy queries
as necessary, we may assume that A made exactly ¢s signature queries. Let W, « g5 V"=,
Algorithm B searches the H-list for a tuple whose rightmost component is equal to W,.. There
are two possibilities:

Type-1 forgery: No tuple of the form (-,-, W,) appears on the H-list.

Type-2 forgery: The H-list contains at least one tuple (mj,r;, W) such that W; = W,.
Let bype < 1 if A produced a type-1 forgery, or A made a signature query for a message m
such that g, = U. In all other cases, set byype < 2. If bype # Cmode then B reports failure

and aborts. Otherwise, B outputs an existential forgery on the basic signature scheme as
follows:

o (If ¢mode = brype = 1). If A made a signature query for a message m such that g, ™ = U
then B is already done. Therefore, we assume 4 produced a type-1 forgery. Since the forgery
is valid, we have

Mo+ YT

e(g1,92) = e(ow, U- g3 - V™) = (0w, u- gy "*"")

Let wy, = my + yrs. It follows that (w,, o) is a valid message/signature pair in the basic
signature scheme. Furthermore, it is a valid existential forgery for the basic scheme since in
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a type-1 forgery Algorithm B did not request a signature on the message w. € Z,. Indeed,
B only requested signatures on messages w; = m; + yr; where (m;,r;, g;U 7) is a tuple in the
H-list, but g3’ is not equal to any g,” on the H-list. Algorithm B outputs (w.,o.) as the
required existential forgery.

o (If cmode = btype = 2). Let (mj,7;, W;) be a tuple on the H-list where W; = W,. Since
V = u we know that g;nju”j = gy *u". Write u = g3 for some 7 € Zj so that m; + 7r; =
My + 7. We know that (mj,r;) # (m«, 1), otherwise the forgery would be identical to a
. . . . m; . M 1o
previously given signature on the query message m;. Since g, ’u'7 = g5 *u" it follows that
mj # ms and 7; # ri. Therefore, 7 = (m. —m;)/(r; — r) € Z;. Hence, B just recovered
the private key, 7, for the public key (g1, g2, u, z) it was given. Algorithm B can now forge a
signature on any message of its choice.

This completes the description of Algorithm B. A standard argument shows that if B does not
abort, then, from the viewpoint of A, the simulation provided by B is indistinguishable from a real
attack scenario. In particular, (i) the view from A is independent of the value of ¢poqe, (ii) the
public keys are uniformly distributed, and (iii) the signatures are correct. Therefore, A produces a
valid forgery in time ¢t with probability at least e.

It remains to bound the probability that B does not abort. We argue as follows:

e Conditioned on the event ¢pode = btype = 1, Algorithm B aborts if 4 issued a signature query
myg = wy. This happens with probability at most ¢s/p.
e Conditioned on the event cpode = biype = 2, Algorithm B does not abort.

Since ¢mode is independent of bype we have that Pricmede = biype] = 1/2. It now follows that B
produces a valid forgery with probability at least €/2 — ¢5/p, as required. ]

Since in the full scheme a single message has many valid signatures, it is worth repeating that
the full signature scheme is existentially unforgeable in the strong sense: the adversary cannot make
any forgery, even on messages which are already signed.

3.3 Relation to Chameleon Hash Signatures

It is instructive to consider the relation between the full signature scheme above and a signature con-
struction based on the Strong RSA assumption due to Gennaro, Halevi, and Rabin (GHR) [GHR99].
GHR signatures are pairs (7, s'/# (7)) where H is a Chameleon hash [KR00], r is random in some
range, and arithmetic is done modulo an RSA modulus N. Looking closely, one can see some
parallels between the proof of security in Lemma 3.3 above and the proof of security in [GHR99].
There are three interesting points to make:

e The m + yr component in our signature scheme provides us with the functionality of a
Chameleon hash: given m, we can choose r so that m + yr maps to some predefined value
of our choice. This makes it possible to handle the chosen message attack. Embedding the
hash m + yr directly in the signature scheme results in a much more efficient construction
than using an explicit Chameleon hash (which requires additional exponentiations). This is
not known to be possible with Strong RSA signatures.

e One difficulty with GHR signatures is that given a solution (6,s'/%) to the Strong RSA
problem one can deduce another solution, e.g. (3, st/ 3). Thus, given a GHR signature on one
message it possible to deduce a GHR signature on another message (see [GHR99, CNOO] for

235



details). Gennaro et al. solve this problem by ensuring that H(m,r) always maps to a prime;
However, that makes it difficult to compute the hash (a different solution is given in [CS00]).
This issue does not come up at all in our signature scheme above.

e We obtain short signatures since, unlike Strong RSA, the ¢-SDH assumption applies to groups
with a short representation.

Thus, we see that Strong Diffie-Hellman leads to signatures that are simpler, more efficient, and
shorter than their Strong RSA counterparts.

3.4 Limited Message Recovery

We now describe another useful property of the signature schemes whereby the total size of signed
messages can be further reduced at the cost of increasing the verification time. The technique
applies equally well to the fully secure signature scheme as to the weakly secure one.

A standard technique for shortening the total length of message/signature pairs is to encode a
part of the message in the signature [MVV97]. Signatures based on trapdoor permutations support
very efficient message recovery.

At the other end of the spectrum, a trivial signature compression mechanism that applies to any
signature scheme is as follows: Rather than transmit a message/signature pair (M, o), the sender
transmits (M ,0) where M is the same as M except that the last ¢ bits are truncated. In other
words, M is t bits shorter than M. To verify (M ,0) the verifier tries all 2! possible values for the
truncated bits and accepts the signature if one of them verifies. To reconstruct the original signed
message M, the verifier appends to M the t bits for which the signature verified.

This trivial method shows that the pair (M, o) can be shortened by t-bits at the cost of increasing
verification time by a factor of 2!. For our signature scheme we obtain a better tradeoff: the pair
(M, o) can be shortened by t bits at the cost of increasing verification time by a factor of 2t/2 only.
We refer to this property as limited message recovery.

Limited Message Recovery. Limited message recovery applies to both the full signature scheme
and the weakly secure signature scheme of Lemma 3.2. For simplicity, we only show how limited
message recovery applies to the full signature scheme. Assume messages are k-bit strings represented
as integers in Z;. Let (91,92, u, v, z) be a public key in the full scheme—although for this application
one might prefer to abbreviate the public key as (g2,u,v) and let the verifier derive ¢g; and z.
Suppose we are given the signed message (m,o,r) where 7 is a truncation of the last ¢ bits of
m € Z,. Thus m = - 2t + 6 for some integer 0 < 6 < 2¢. Our goal is to verify the signed message
(m, o, r) and to reconstruct the missing bits d in time 2t/2 To do so, we first rewrite the verification
equation e(o, u-v" - g8') = e(g1,92) as

m _ e(g1,92)
6(0792) - G(O',U"Ur)
Substituting m = m - 2t + § we obtain
) e(g1, 92)
e(o, = - 2
(o = o e @

Now, we say that (1, 0,7) is valid if there exists an integer § € [0,2!) satisfying Equation (2).
Finding such a § takes time approximately 2¢/2 using Pollard’s Lambda method [MVV97, p.128]
for computing discrete logarithms. Thus, we can verify the signature and recover the t missing
message bits in time ot/ 2 as required.
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Ultra Short Weakly Secure Signatures. Obvious applications of limited message recovery are
situations where bandwidth is extremely limited, such as when the signature is an authenticator
that is to be typed-in by a human. The messages in such applications are typically chosen and
signed by a central authority, so that adaptive chosen message attacks are typically not a concern.
It is safe in those cases to use the weakly secure signature scheme of Lemma 3.2, and apply
limited message recovery to further shrink the already compact signatures it produces. Specifically,
using t-bit truncation as above we obtain a total signature overhead of (160 — ¢) bits for common
security parameters, at the cost of requiring 2//2 arithmetic operations for signature verification.
We emphasize that the security of this system does not rely on random oracles.

3.5 Arbitrary Message Signing

We can extend our signature schemes to sign arbitrary messages in {0,1}*, as opposed to merely
messages in Zy, by first hashing the message using a collision-resistant hash function H : {0,1}* —
Z,, prior to both signing and verifying. A standard argument shows that if the scheme above is
secure against existential forgery under a chosen message attack (in the strong sense) then so is
the scheme with the hash. The result is a signature scheme for arbitrary messages in {0,1}*.
We note that there is no need for a full domain hash into Zy; a collision resistant hash function
H:{0,1}* — {1,...,2% for 2° < p is sufficient for the security proof. This transformation applies
to both the fully and the weakly secure signature schemes described above.

4 Shorter Signatures With Random Oracles

For completeness we show that the weakly secure signature scheme of Lemma 3.2 gives rise to very
efficient and fully secure short signatures in the random oracle model. To do so, we show a general
transformation from any existentially unforgeable signature scheme under a weak chosen message
attack into an existentially unforgeable signature scheme under a standard chosen message attack
(in the strong sense), in the random oracle model. This gives a very efficient short signature scheme
based on ¢-SDH in the random oracle model. We analyze our construction using a method of Katz
and Wang [KWO03] which gives a very tight reduction to the security of the underlying signature.
We note that a closely related system with a weaker security analysis was independently discovered
by Zhang et al. [ZSNS04].

Let (KeyGen, Sign, Verify) be an existentially unforgeable signature under a weak chosen
message attack. We assume that the scheme signs messages in some finite set ¥ and that the
private keys are in some set II. We need two hash functions H; : II x {0,1}* — {0,1} and
Hjy : {0,1} x {0,1}* — X that will be viewed as random oracles in the security analysis. The
hash-signature scheme is as follows:

Key generation: Same as KeyGen. The public key is PK; The secret key is SK € II.

Signing: Given a secret key SK, and given a message M € {0,1}*, compute b — H{(SK,M) €
{0,1} and m «— Hy(b, M) € 3. Output the signature (b, Sign(m)). Note that signatures are
one bit longer than in the underlying signature scheme.

Verification: Given a public key PK, a message M € {0,1}*, and a signature (b, o), output valid
if Verify(PK, Hy(b, M), o) = valid.

Theorem 4.1 below proves security of the scheme. Note that the security reduction in Theo-
rem 4.1 is tight, namely, an attacker on the hash-signature scheme with success probability e is
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converted to an attacker on the underlying signature with success probability approximately €/2.
Proofs of signature schemes in the random oracle model are often far less tight.

Theorem 4.1. Suppose (KeyGen, Sign, Verify) is (t', ¢%, €' )-existentially unforgeable under a weak
chosen message attack. Then the corresponding hash-signature scheme is (t,qs, qu, €)-secure against
existential forgery under an adaptive chosen message attack, in the random oracle model, whenever
qs + qu < ¢, and for all all t and € satisfying
q/
e>2¢/(1— |—§‘) ~ 2¢ and  t <t —o(t)

Proof. Assume A is a forger that (¢, ¢s, ¢y, €)-breaks the hash-signature scheme (in the random ora-
cle model). We construct an algorithm B that interacts with A and (¢, ¢}, € )-breaks the underlying
signature scheme. Algorithm B works as follows:

Setup: Algorithm B picks ¢} random and independent messages my, . .. ;Mg in 3 and sends them
to the challenger. The challenger responds with a public key PK and signatures o1,...,04
on mi,...,mg . Algorithm B gives PK to Algorithm A.

Hash queries: At any time Algorithm A can query the hash functions H; and Hs. It can query
these functions gy times each. Since B can maintain tables to ensure that repeated queries
are answered consistently, we assume without loss of generality that A never queries on the
same input twice.

To respond to a query for H (K, M) Algorithm B first checks if K = SK by attempting to sign
a random message using K. If the signature is valid then B outputs that message/signature

pair as an existential forgery and terminates. Otherwise, B picks a random bit b € {0, 1} and
tells A that Hy (K, M) =b.

To respond to a query for Ha(c, M) Algorithm B maintains a list of tuples (M;,b;,4) called
the H-list, and a counter ¢ which is initially set to 0. The H-list is initially empty. When
responding to a query for Ha(c, M) we set things up so that we know the signature on either
Hy(0,M) or Hy(1,M) but A will not know which one. More precisely, to respond to the
query Hs(c, M) Algorithm B does the following:

1. If M is not on the left hand side of any tuple in the H-list then pick a random bit
be{0,1}, set £ — ¢+ 1, and add (M,b,¥) to the H-list.

2. Let (M,b,j) be the entry on the H-list corresponding to M. Then, if b = ¢ output
Hjy(e, M) = m;j (for which we know that o; is a valid signature). Otherwise, pick a
random message m € ¥ and output Ha(c, M) = m. Note that j < g5+ qu < ¢% (since £
is always less than this value) so that m; is well defined.

Signature queries: A can issue up to gs signature queries. To respond to a signature query for
M € ¥ Algorithm B first runs the algorithm for responding to a hash query for Hy(0, M)
(hence the total number of Hy queries is gg + qy). Let (M,b,j) be the entry on the H-list
corresponding to M. Algorithm B responds with (b,0;) as the signature on M. This is a
valid signature on M since Ha(b, M) = m; and o, is a valid signature on m;. Note that this
defines Hy(SK, M) = b even though B does not know SK.

Output: Eventually, A returns a forgery, (M, (bs,04)), such that (b, 04) is a valid signature on
M, in the hash-signature scheme and A did not previously obtain (b.,0,) from B in response
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to a signature query on M,. It follows that o, is a valid signature in the underlying signature

scheme of the message m, = Ha(bs, My). If m, € {my,...,my } then B reports failure and
aborts. Otherwise, it outputs (m.,o,) as the existential forgery for the underlying signature
scheme

Algorithm B simulates the random oracles and signature oracle perfectly for A. Therefore A
produces a valid forgery for the hash-signature scheme with probability at least e. It remains
to bound the probability that m. € {mi,...,my}. Let (Mi,b,5) be the entry on the H-list
corresponding to M,. First, consider the case where A never issued a signature query for M,. In
this case the bit b is independent of A’s view. Therefore, Pr[b, = b] = 1/2. Next, note that if
b, = b then, by construction, m, = Ha(bs, M,) = m; and therefore in this case B will fail. When
b, # b, by construction, Ha(bs, M,) is chosen at random in ¥ and therefore, in this case, B will fail
with probability at most ¢%/|X|. Now, in the case where A did issue a signature query for M., we
necessarily have b, # b, otherwise A’s forgery would be a replay of B’s response. B’s failure rate in
this case is thus also at most ¢} /|X|. Thus, in all cases, it follows that B succeeds with probability
at least

€ Qg /
PF[SUCCQSS(B)] 9 ( ‘ ’ ) €

as required. ]

We note that in the proof above H; can be replaced with a Pseudo Random Function (PRF)
and does not need to be modeled as a random oracle. However, modeling Hy as a random oracles
appears to be unavoidable.

Applying Theorem 4.1 to the weakly secure scheme of Lemma 3.2 gives an efficient short signa-
ture existentially unforgeable under a standard chosen message attack in the random oracle model

assuming (gs—+qx+1)-SDH. For a public key (g1, g2, v = g3, 2) and a hash function H : {0, 1}* — Z7

a signature on a message m is defined as the value o «— gi/ (@+H(bm) G1 concatenated with the

bit b € {0,1}. To verify the signature, check that e(o, v - gf(b’m)) =z = e(g1,92). We see that
signature length is essentially the same as in BLS signatures, but verification time is approximately
half that of BLS. During verification, exponentiation is always base go which enables a further

speed-up by pre-computing certain powers of gs.

Full Domain Hash. Another method for converting a signature scheme secure under a weak
chosen message attack into a scheme secure under a standard chosen message attack is to simply
apply Sign and Verify to H(M) rather than M. In other words, we hash M € {0,1}* using a
full domain hash H prior to signing and verifying. Security in the random oracle model is shown
using a similar argument to Coron’s analysis [Cor00] of the Full Domain Hash [BR96]. However,
the resulting reduction is not tight: an attacker on this hash-then-sign signature with success
probability € yields an attacker on the underlying signature with success probability approximately
€/qs. We note, however, that these proofs are set in the random oracle model and therefore it is
not clear whether the efficiency of the security reduction is relevant to actual security in the real
world. Therefore, since this full domain hash signature scheme is slightly simpler that the system
in Theorem 4.1 it might be preferable to use it rather than the system of Theorem 4.1. When
we apply the full domain hash to the weakly secure scheme of Lemma 3.2, we obtain a secure
signature under a standard chosen message attack assuming (¢s + gy + 1)-SDH. A signature is
one element, namely o «— gi/ (@+H(m) ¢ G1. As before, signature verification is twice as fast as
in BLS signatures. As mentioned above, a similar scheme was independently proposed by Zhang
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et al. [ZSNS04]. We also note that, in the random oracle model, security of this full domain hash
scheme can be proven under a slightly weaker complexity assumption than g-SDH, namely that the
value ¢ in the ¢-SDH assumption is pre-specified rather than chosen by the adversary. However,
the resulting security reduction is far less efficient.

5 Generic Security of the ¢-SDH Assumption

To provide more confidence in the ¢-SDH assumption we prove a lower bound on the computational
complexity of the ¢-SDH problem for generic groups in the sense of Shoup [Sho97].

In the generic group model, elements of G1, Go, and G appear to be encoded as unique random
strings, so that no property other than equality can be directly tested by the adversary. Five oracles
are assumed to perform operations between group elements, such as computing the group action
in each of the three groups Gi, Go, G, as well as the isomorphism 1) : Go — G1, and the bilinear
pairing e : G; X Go — Gp. The opaque encoding of the elements of G1 is modeled as an injective
function & : Z, — =;, where Z; C {0,1}*, which maps all a € Z, to the string representation
&1(g?) of g* € Gy1. We similarly define & : Z,, — Z5 for Gy and &7 : Zy — Er for Gp. The attacker
A communicates with the oracles using the £-representations of the group elements only.

Theorem 5.1. Let A be an algorithm that solves the q-SDH problem in the generic group model,
making a total of at most qo queries to the oracles computing the group action in Gq, Gy, Gp, the
oracle computing the isomorphism v, and the oracle computing the bilinear pairing e. If x € Z,
and &1, &, & are chosen at random, then the probability € that A(p,&1(1),&2(1),&2(x), ..., & (x9))

outputs (c,fl(m%rc)) with ¢ € Zy, is bounded by

2 2 3
< lacta+2) q:O<(qc) q+4q >
P P

Proof. Consider an algorithm B that plays the following game with .A.

B maintains three lists of pairs L1 = {(Fl,iagl,i) = 0,...,’7’1 — 1}, LQ = {(F27i,£27i) :
i =0,....,7— 1}, Ly = {(Fr;,éri) : ¢ = 0,...,70 — 1}, such that, at step 7 in the game,
T+ 12+ 7r =7+ q+ 2. The Fy; and Fy; are polynomials of degree < ¢ in Zy[z|, and the Fr;
are polynomials of degree < 2¢ in Z,[x]. The &1, &2, &7, are strings in {0,1}*. The lists are
initialized at step 7 = 0 by taking 7 = 1, 79 = ¢+ 1, 7 = 0, and posing F1 o = 1, and Fy; = xt
for i € {0,...,¢}. The corresponding & o and &2 ; are set to arbitrary distinct strings in {0, 1}*.

We may assume that A only makes oracle queries on strings previously obtained form B, since
B can make them arbitrarily hard to guess. We note that B can determine the index ¢ of any given
string & ; in Ly (resp. &2 in Lo, or &7; in Lt), breaking ties between multiple matches arbitrarily.

B starts the game by providing A with the ¢+ 2 strings £10,82,0, .. .,&2,4. Queries go as follows.

Group action: Given a multiply/divide selection bit and two operands &y ;, &,; with 0 <,j < 71,
we compute Fy , < Fy; + Fy j € Zp[z] depending on whether a multiplication or a division
is requested. If Fy , = Fy; for some | < 71, we set &1, « & ; otherwise, we set §; -, to a
string in {0, 1}* distinct from &1 9,...,&1,,-1. We add (Fi ,&1,) to Ly and give & -, to A,
then increment 71 by one. Group action queries in Gy and Gr are treated similarly.

Isomorphism: Given a string &»; with 0 <i < 7, we let F| ;, « Fy; € Z,[z]. If F} ; = Fy; for
some | < 71, we set &1 7, « & 1; otherwise, we set &1 7, to a string in {0,1}*\{&10,...,&1,m-1}
We add (Fi7,,&1,7) to L1, give & -, to A, and increment 7 by one.
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Pairing: Given two operands & ; and & ; with 0 <14 < 71 and 0 < j < 7, we compute the product
Fr .« Fi;-Fyj € Zyplx]. If Fr,, = Fr; for some | < 7p, we set {15, < &5 otherwise, we
set &7,7, to a string in {0, 1} \ {&10, ..., &rrp—1}. We add (Fr 7y, €7,0p) to Ly, give &7, tO
A, and increment 77 by one.

A terminates and returns a pair (c,&; ) where 0 < ¢ < 7. Let Fj, be the corresponding
polynomial in the list L;. In order to exhibit the correctness of A’s answer within the simulation
framework, B computes the polynomial Fr, = Fy - (Fo1 + [c]Fa0) = F1 - (x + ¢). Notice that if
A’s answer is correct then necessarily

Fr (z)—1=0 (3)

Indeed, this equality corresponds to the DDH relation “e(A4, ¢5¢5) = e(g1,92)” where A denotes the
element of Gy represented by &; . Observe that since the constant monomial “1” has degree 0 and
Fr, = Fi - (x+c) where (z +c) has degree 1, the above relation (3) cannot be satisfied identically
in Zp[x] unless Fy o has degree > p — 2. We know that the degree of F, is at most ¢, therefore
we deduce that there exists a value of x for which Equation (3) does not hold. Thus, since it is a
non-trivial polynomial equation of degree < q + 1, it admits at most ¢ + 1 roots in Z,,.

At this point B chooses a random z* € Z,. The simulation provided by B is perfect unless the
instantiation x < x* creates an equality relation between the simulated group elements that was
not revealed to A4, a category in which relation (3) belongs, as we just shown. Thus, the success
probability of A is bounded by the probability that any of the following holds:

1. Fyi(z*) — F1 j(z*) = 0 for some 4, j such that Fy; # F j,
2. Fyi(x*) — Fy j(z*) = 0 for some i, j such that Fy; # F» j,
3. Fr;(z*) — Frj(x*) = 0 for some i, j such that Fr; # Fr;,
4. Fip(z*) - (2*4+¢)—1=0.

Since Fi ; — Fy ; for fixed ¢ and j is a polynomial of degree at most g, it vanishes at a random z* € Z,,
with probability at most ¢/p. Similarly, for fixed ¢ and j, the second case occurs with probability
< q/p, the third with probability < 2¢/p (since Fr; — Fr ; has degree at most 2¢), and the fourth
with probability < (¢ + 1)/p. By summing over all valid pairs (¢, ) in each case, we find that .4
wins the game with probability € < (2)% + (T;)% +(7) % + %f. Since 11 + 1o + 11 < qe + q + 2,
the required bound follows: € < (g5 + ¢ + 2)*(q/p) = O((¢c)*(a/p) + ¢*/p)- O

Corollary 5.2. Any adversary that solves the q-SDH problem with constant probability € > 0 in
generic groups of order p such that ¢ < o(¥/p) requires 2(/ep/q) generic group operations.

6 Conclusions

We presented a number of short signature schemes based on the ¢-SDH assumption. Our main
result is a short signature which is fully secure without using the random oracle model. The
signature is as short as DSA signatures, but is provably secure in the standard model. We also
showed that the scheme supports limited message recovery, for even greater compactness.

These constructions are possible thanks to properties of the g-SDH assumption. The assumption
can be viewed as a discrete logarithm analogue of the Strong RSA assumption. We believe the
g-SDH assumption is a useful tool for constructing cryptographic systems and we expect to see
many other schemes based on it. For example, we mention a new group signature scheme of Boneh
et al. [BBS04].
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Abstract

We study the problem of searching on data that is encrypted using a public key system.
Consider user Bob who sends email to user Alice encrypted under Alice’s public key. An email
gateway wants to test whether the email contains the keyword “urgent” so that it could route
the email accordingly. Alice, on the other hand does not wish to give the gateway the ability to
decrypt all her messages. We define and construct a mechanism that enables Alice to provide a
key to the gateway that enables the gateway to test whether the word “urgent” is a keyword in
the email without learning anything else about the email. We refer to this mechanism as Public
Key Encryption with keyword Search. As another example, consider a mail server that stores
various messages publicly encrypted for Alice by others. Using our mechanism Alice can send
the mail server a key that will enable the server to identify all messages containing some specific
keyword, but learn nothing else. We define the concept of public key encryption with keyword
search and give several constructions.

1 Introduction

Suppose user Alice wishes to read her email on a number of devices: laptop, desktop, pager, etc.
Alice’s mail gateway is supposed to route email to the appropriate device based on the keywords
in the email. For example, when Bob sends email with the keyword “urgent” the mail is routed to
Alice’s pager. When Bob sends email with the keyword “lunch” the mail is routed to Alice’s desktop
for reading later. One expects each email to contain a small number of keywords. For example,
all words on the subject line as well as the sender’s email address could be used as keywords. The
mobile people project [24] provides this email processing capability.

Now, suppose Bob sends encrypted email to Alice using Alice’s public key. Both the contents of
the email and the keywords are encrypted. In this case the mail gateway cannot see the keywords
and hence cannot make routing decisions. As a result, the mobile people project is unable to process
secure email without violating user privacy. Our goal is to enable Alice to give the gateway the
ability to test whether “urgent” is a keyword in the email, but the gateway should learn nothing
else about the email. More generally, Alice should be able to specify a few keywords that the mail
gateway can search for, but learn nothing else about incoming mail. We give precise definitions in
section 2.
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To do so, Bob encrypts his email using a standard public key system. He then appends to the
resulting ciphertext a Public-Key Encryption with keyword Search (PEKS) of each keyword. To
send a message M with keywords W1, ..., W,, Bob sends

Es (M) | PEKS(A,..,W1) || -+ || PEKS(A,.s, Win)

pub

Where A, is Alice’s public key. The point of this form of encryption is that Alice can give the
gateway a certain trapdoor Ty, that enables the gateway to test whether one of the keywords
associated with the message is equal to the word W of Alice’s choice. Given PEKS(A4,.,, W’) and
Ty the gateway can test whether W = W'. If W # W' the gateway learns nothing more about W'.
Note that Alice and Bob do not communicate in this entire process. Bob generates the searchable
encryption for W' just given Alice’s public key.

In some cases, it is instructive to view the email gateway as an IMAP or POP email server.
The server stores many emails and each email contains a small number of keywords. As before, all
these emails are created by various people sending mail to Alice encrypted using her public key. We
want to enable Alice to ask queries of the form: do any of the messages on the server contain the
keyword “urgent”? Alice would do this by giving the server a trapdoor T}, thus enabling the server
to retrieve emails containing the keyword W. The server learns nothing else about the emails.

Related work. A related issue deals with privacy of database data. There are two different
scenarios: public databases and private databases, and the solutions for each are different.

Private databases: In this settings a user wishes to upload its private data to a remote database and
wishes to keep the data private from the remote database administrator. Later, the user must be
able to retrieve from the remote database all records that contain a particular keyword. Solutions
to this problem were presented in the early 1990’s by Ostrovsky [26] and Ostrovsky and Goldreich
[17] and more recently by Song at al. [28]. The solution of Song. at al [28] requires very little
communication between the user and the database (proportional to the security parameter) and
only one round of interaction. The database performs work that is linear in its size per query.
The solution of [26, 17] requires poly-logarithmic rounds (in the size of the database) between
the user and the database, but allows the database to do only poly-logarithmic work per query.
An additional privacy requirement that might be appealing in some scenarios is to hide from the
database administrator any information regarding the access pattern, i.e. if some item was retrieved
more then once, some item was not retrieved at all, etc. The work of [26, 17] achieves this property
as well, with the same poly-logarithmic cost! per query both for the database-user interaction and
the actual database work. We stress that both the constructions of [26, 17] and the more recent
work of [10, 28, 16] apply only to the private-key setting for users who own their data and wish to
upload it to a third-party database that they do not trust.

Public Databases Here the database data is public (such as stock quotes) but the user is unaware
of it and wishes to retrieve some data-item or search for some data-item, without revealing to the
database administrator which item it is. The naive solution is that the user can download the
entire database. Public Information Retrieval (PIR) protocols allow user to retrieve data from a
public database with far smaller communication then just downloading the entire database. PIR
was first shown to be possible only in the setting where there are many copies of the same database
and none of the copies can talk to each other [5]. PIR was shown to be possible for a single
database by Kushilevitz and Ostrovsky [22] (using homomorphic encryption scheme of [19]). The
communication complexity of [22] solution (i.e. the number of bits transmitted between the user

!The poly-logarithmic construction of [26, 17] requires large constants, which makes it impractical; however their
basic O(y/n) solution was recently shown to be applicable for some practical applications [10].
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and the database) is O(n€), where n is the size of the database and e > 0. This was reduced to
poly-logarithmic overhead by Cachin, Micali, and Stadler [4]. As pointed out in [22], the model of
PIR can be extended to one-out-of-n Oblivious Transfer and keyword searching on public data, and
received a lot of additional attention in the literature (see, for example, [22, 8, 20, 9, 23, 25, 27].
We stress though that in all these settings the database is public, and the user is trying to retrieve
or find certain items without revealing to the database administrator what it is searching for. In
the setting of a single public database, it can be shown that the database must always perform
work which is at least linear in the size of the database.

Our problem does not fit either of the two models mentioned above. Unlike the private-key
setting, data collected by the mail-server is from third parties, and can not be “organized” by the
user in any convenient way. Unlike the publicly available database, the data is not public, and
hence the PIR solutions do not apply.

We point out that in practical applications, due to the computation cost of public key encryption,
our constructions are applicable to searching on a small number of keywords rather than an entire
file. Recently, Waters et al. [30] showed that public key encryption with keyword search can be
used to build an encrypted and searchable audit log. Other methods for searching on encrypted
data are described in [16, 12].

2 Public key encryption with searching: definitions

Throughout the paper we use the term negligible function to refer to a function f : R — [0, 1] where
f(s) < 1/g(s) for any polynomial g and sufficiently large s.

We start by precisely defining what is a secure Public Key Encryption with keyword Search
(PEKS) scheme. Here “public-key” refers to the fact that ciphertexts are created by various people
using Alice’s public key. Suppose user Bob is about to send an encrypted email to Alice with
keywords Wy, ..., Wy (e.g., words in the subject line and the sender’s address could be used as
keywords, so that k is relatively small). Bob sends the following message:

[EApub [msg], PEKS(A,.s, W1),...,PEKS(A, .., Wk)} (1)

where A,,, is Alice’s public key, msg is the email body, and PEKS is an algorithm with properties
discussed below. The PEKS values do not reveal any information about the message, but enable
searching for specific keywords. For the rest of the paper, we use as our sample application a mail
server that stores all incoming email.

Our goal is to enable Alice to send a short secret key T}, to the mail server that will enable
the server to locate all messages containing the keyword W, but learn nothing else. Alice produces
this trapdoor Ty, using her private key. The server simply sends the relevant emails back to Alice.
We call such a system non-interactive public key encryption with keyword search, or as a shorthand
“searchable public-key encryption”.

Definition 2.1. A non-interactive public key encryption with keyword search (we sometimes ab-
breviate it as “searchable encryption”) scheme consists of the following polynomial time randomized
algorithms:
1. KeyGen(s): Takes a security parameter, s, and generates a public/private key pair A,.;, A, -
2. PEKS(A4,.,, W): for a public key A4,,, and a word W, produces a searchable encryption of .
3. Trapdoor(A,,.,, W): given Alice’s private key and a word W produces a trapdoor Ty, .
4. Test(A,.,, S, Tw): given Alice’s public key, a searchable encryption S = PEKS(A,.,, W’), and
a trapdoor Ty, = Trapdoor(A4,,,,, W), outputs ‘yes’ if W = W' and ‘no’ otherwise.
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Alice runs the KeyGen algorithm to generate her public/private key pair. She uses Trapdoor
to generate trapdoors Ty, for any keywords W that she wants the mail server or mail gateway to
search for. The mail server uses the given trapdoors as input to the Test() algorithm to determine
whether a given email contains one of the keywords W specified by Alice.

Next, we define security for a PEKS in the sense of semantic-security. We need to ensure that an
PEKS(A,.,, W) does not reveal any information about W unless T} is available. We define security
against an active attacker who is able to obtain trapdoors T}, for any W of his choice. Even under
such attack the attacker should not be able to distinguish an encryption of a keyword Wy from an
encryption of a keyword W7 for which he did not obtain the trapdoor. Formally, we define security
against an active attacker A using the following game between a challenger and the attacker (the
security parameter s is given to both players as input).

PEKS Security game:

1. The challenger runs the KeyGen(s) algorithm to generate A,,, and A,,,,. It gives A,,, to
the attacker.

2. The attacker can adaptively ask the challenger for the trapdoor Ty for any keyword
W € {0, 1}* of his choice.

3. At some point, the attacker A sends the challenger two words Wy, W1 on which it wishes
to be challenged. The only restriction is that the attacker did not previously ask for the
trapdoors Ty, or Ty,. The challenger picks a random b € {0,1} and gives the attacker
C = PEKS(A, ., W3). We refer to C' as the challenge PEKS.

4. The attacker can continue to ask for trapdoors Ty, for any keyword W of his choice as
long as W # Wy, W1.

5. Eventually, the attacker A outputs b’ € {0,1} and wins the game if b =b'.

In other words, the attacker wins the game if he can correctly guess whether he was given the
PEKS for Wy or W7. We define A’s advantage in breaking the PEKS as

Adv a(s) = | Prfp = b] — %|

Definition 2.2. We say that a PEKS is semantically secure against an adaptive chosen keyword
attack if for any polynomial time attacker A we have that Adv 4(s) is a negligible function.

Chosen Ciphertext Security. We note that Definition 2.2 ensures that the construction given
in Eq. (1) is semantically secure whenever the public key encryption system E Ay 18 semantically
secure. However, as is, the construction is not chosen ciphertext secure. Indeed, a chosen cipher-
text attacker can break semantic security by reordering the keywords in Eq. (1) and submitting
the resulting ciphertext for decryption. A standard technique can make this construction chosen
ciphertext secure using the methods of [7]. We defer this to the full version of the paper.

2.1 PEKS implies Identity Based Encryption

Public key encryption with keyword search is related to Identity Based Encryption (IBE) [29, 2].
Constructing a secure PEKS appears to be a harder problem than constructing an IBE. Indeed, the
following lemma shows that PEKS implies Identity Based Encryption. The converse is probably
false. Security notions for IBE, and in particular chosen ciphertext secure IBE (IND-ID-CCA), are
defined in [2].
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Lemma 2.3. A non-interactive searchable encryption scheme (PEKS) that is semantically secure
against an adaptive chosen keyword attack gives rise to a chosen ciphertext secure IBE system

(IND-ID-CCA).
Proof sketch: Given a PEKS (KeyGen, PEKS, Trapdoor, Test) the IBE system is as follows:

1. Setup: Run the PEKS KeyGen algorithm to generate A,.,/A,..,. The IBE system parameters
are A,.,. The master-key is A,,.;,.

2. KeyGen: The IBE private key associated with a public key X € {0,1}* is
dx = [Trapdoor(A4,,,, X||0), Trapdoor(A4,,.,, X||1)],
where || denotes concatenation.
3. Encrypt: Encrypt a bit b € {0, 1} using a public key X € {0,1}* as: CT = PEKS(A4,.,, X||b).

4. Decrypt: To decrypt CT = PEKS(A,.;, X||b) using the private key dx = (dp, dy).
Output ‘0" if Test(A,.,, CT,dp) = ‘yes’ and output ‘1’ if Test(A4,.,, CT,d1) = ‘yes’

One can show that the resulting system is IND-ID-CCA assuming the PEKS is semantically secure
against an adaptive chosen message attack. O

This shows that building non-interactive public-key searchable encryption is at least as hard as
building an IBE system. One might be tempted to prove the converse (i.e., IBE implies PEKS) by
defining

i.e. encrypt a string of k zeros with the IBE public key W € {0,1}*. The Test algorithm attempts to
decrypt Fy,[0] and checks that the resulting plaintext is 0¥. Unfortunately, this does not necessarily
give a secure searchable encryption scheme. The problem is that the ciphertext C'T" could expose the
public key (W) used to create CT. Generally, an encryption scheme need not hide the public key
that was used to create a given ciphertext. But this property is essential for the PEKS construction
given in (2). We note that public key privacy was previously studied by Bellare et al. [1]. The
construction in (2) requires an IBE system that is public-key private.

Generally, it appears that constructing a searchable public-key encryption is a harder problem
than constructing an IBE scheme. Nevertheless, our first PEKS construction is based on a recent
construction for an IBE system. We are able to prove security by exploiting extra properties of
this system.

3 Constructions

We give two constructions for public-key searchable encryption: (1) an efficient system based on
a variant of the Decision Diffie-Hellman assumption (assuming a random oracle) and (2) a limited
system based on general trapdoor permutations (without assuming the random oracle), but less
efficient.
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3.1 Construction using bilinear maps

Our first construction is based on a variant of the Computational Diffie-Hellman problem. Boneh
and Franklin [2] recently used bilinear maps on elliptic curves to build an efficient IBE system.
Abstractly, they use two groups G1,G9 of prime order p and a bilinear map e : G; X G1 — Go
between them. The map satisfies the following properties:

1. Computable: given g, h € G there is a polynomial time algorithms to compute e(g, h) € Go.
2. Bilinear: for any integers z,y € [1, p] we have e(g%, ¢¥) = e(g, g)™Y
3. Non-degenerate: if g is a generator of G then e(g, g) is a generator of Gs.

The size of G1, G2 is determined by the security parameter.

We build a non-interactive searchable encryption scheme from such a bilinear map. The con-
struction is based on [2]. We will need hash functions Hj : {0,1}* — Gy and Hj : G — {0, 1}1°8P.
Our PEKS works as follows:

e KeyGen: The input security parameter determines the size, p, of the groups G and Go. The
algorithm picks a random « € Z; and a generator g of Gi1. It outputs A,,, = [g,h = g*] and
Ap'ri'u = Q.

o PEKS(A,., W): First compute t = e(H1 (W), k") € Go for a random 7 € Z.
Output PEKS(A,.,, W) = [¢", Ha(t)].

e Trapdoor(A,,.,, W): output Ty, = Hi(W)* € G;.

o Test(A,.;, S, Tw): let S =[A, B]. Test if Hy(e(Tw, A)) = B.
If so, output ‘yes’; if not, output ‘no’.

We prove that this system is a non-interactive searchable encryption scheme semantically secure
against a chosen keyword attack in the random oracle model. The proof of security relies on the
difficulty of the Bilinear Diffie-Hellman problem (BDH) [2, 21].

Bilinear Diffie-Hellman Problem (BDH): Fix a generator g of G;. The BDH problem is as
follows: given g, g%, ¢ ¢¢ € G as input, compute e(g, g)*¢ € Go. We say that BDH is intractable
if all polynomial time algorithms have a negligible advantage in solving BDH.

We note that the Boneh-Franklin IBE system [2] relies on the same intractability assumption
for security. The security of our PEKS is proved in the following theorem. The proof is set in the
random oracle model. Indeed, it is currently an open problem to build a secure IBE, and hence a
PEKS, without the random oracle model.

Theorem 3.1. The non-interactive searchable encryption scheme (PEKS) above is semantically
secure against a chosen keyword attack in the random oracle model assuming BDH is intractable.

Proof : Suppose A is an attack algorithm that has advantage € in breaking the PEKS. Suppose A
makes at most gy, hash function queries to Hy and at most g trapdoor queries (we assume g, and
qu, are positive). We construct an algorithm B that solves the BDH problem with probability at
least € = €/(eqrqu,), where e is the base of the natural logarithm. Algorithm B’s running time is
approximately the same as A’s. Hence, if the BDH assumption holds in G then € is a negligible
function and consequently € must be a negligible function in the security parameter.

Let ¢ be a generator of Gy. Algorithm B is given ¢, u; = ¢, us = ¢°,us = g7 € G1. Its goal is
to output v = e(g, g)*?" € G3. Algorithm B simulates the challenger and interacts with forger A
as follows:
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KeyGen. Algorithm B starts by giving A the public key A,., = [g, u1].

Hy, Hy-queries. At any time algorithm A can query the random oracles Hy or Hs. To respond to
H; queries algorithm B maintains a list of tuples (W, hj, a;,¢;) called the Hi-list. The list is
initially empty. When A queries the random oracle H; at a point W; € {0, 1}*, algorithm B
responds as follows:

1.

2.
3.

If the query W; already appears on the Hi-list in a tuple (W, h;, a;, ¢;) then algorithm B
responds with Hy(W;) = h; € G;.

Otherwise, B generates a random coin ¢; € {0,1} so that Pr[c; = 0] = 1/(gr + 1).
Algorithm B picks a random a; € Z.

If ¢; = 0, B computes h; < us - g% € Gy.

If ¢; = 1, B computes h; «— g% € Gy.

Algorithm B adds the tuple (W;, h;, a;,¢;) to the Hj-list and responds to A by setting
H,(W;) = h;. Note that either way h; is uniform in G; and is independent of A’s current
view as required.

Similarly, at any time A can issue a query to Hy. Algorithm B responds to a query for Hy(t)
by picking a new random value V € {0,1}°8P for each new ¢ and setting Ho(t) = V. In
addition, B keeps track of all Hy queries by adding the pair (¢, V) to an Hs-list. The Hy-list
is initially empty.

Trapdoor queries. When A issues a query for the trapdoor corresponding to the word W; algo-
rithm B responds as follows:

1.

Algorithm B runs the above algorithm for responding to Hi-queries to obtain an h; € Gy
such that Hy(W;) = h;. Let (W;, h;, a;,¢;) be the corresponding tuple on the Hi-list. If
¢; = 0 then B reports failure and terminates.

. Otherwise, we know ¢; = 1 and hence h; = g% € G;. Define T; = u{’. Observe that

T, = H(W;)* and therefore T; is the correct trapdoor for the keyword W; under the
public key A,., = [g,u1]. Algorithm B gives T; to algorithm .A.

Challenge. Eventually algorithm A produces a pair of keywords Wy and W that it wishes to be
challenged on. Algorithm B generates the challenge PEKS as follows:

1.

2.

3.

Algorithm B runs the above algorithm for responding to Hi-queries twice to obtain a
ho, h1 € Gy such that Hy(Wy) = ho and Hy(W1) = hy. For ¢ = 0,1 let (W;, h;, a;,¢;) be
the corresponding tuples on the H;-list. If both ¢yg = 1 and ¢; = 1 then B reports failure
and terminates.

We know that at least one of ¢, ¢1 is equal to 0. Algorithm B randomly picks a b € {0,1}
such that ¢, = 0 (if only one ¢ is equal to 0 then no randomness is needed since there
is only one choice).

Algorithm B responds with the challenge PEKS C = [us, J] for a random .J € {0, 1}°8P,

Note that this challenge implicitly defines Ho(e(H1(W}),u])) = J. In other words,

J = Ha(e(H1 (W), u])) = Ha(e(uag™, g*7)) = Ha(e(g, g)*7\PTe0))

With this definition, C' is a valid PEKS for W}, as required.

More trapdoor queries. A can continue to issue trapdoor queries for keywords W, where the
only restriction is that W; # Wy, Wy. Algorithm B responds to these queries as before.

250



Output. Eventually, A outputs its guess b’ € {0, 1} indicating whether the challenge C'is the result
of PEKS(A, ., Wo) or PEKS(A,.;, W1). At this point, algorithm B picks a random pair (¢, V)
from the Hy-list and outputs t/e(uy, u3)® as its guess for e(g, g)*?7, where a; is the value
used in the Challenge step. The reason this works is that, as we will show, A must have issued
a query for either Ha(e(Hy(Wy),u])) or Ha(e(H1(Wh),u])). Therefore, with probability 1/2
the Hy-list contains a pair whose left hand side is t = e(Hy (W), u]) = e(g, g)*"#+@). 1f B
picks this pair (t,V) from the Ho-list then t/e(u1,u3)® = e(g, g)*%7 as required.

This completes the description of algorithm B. It remains to show that B correctly outputs
e(g,9)*? with probability at least ¢/. To do so, we first analyze the probability that B does
not abort during the simulation. We define two events:

&1: B does not abort as a result of any of A’s trapdoor queries.
&yt B does not abort during the challenge phase.

We first argue as in [6] that both events £; and & occur with sufficiently high probability.

Claim 1: The probability that algorithm B does not abort as a result of A’s trapdoor queries is
at least 1/e. Hence, Pr[&;] > 1/e.

Proof. Without loss of generality we assume that A does not ask for the trapdoor of the same
keyword twice. The probability that a trapdoor query causes B to abort is 1/(g, + 1). To see this,
let W; be A’s i’th trapdoor query and let (W;, h;, a;, ¢;) be the corresponding tuple on the Hi-list.
Prior to issuing the query, the bit ¢; is independent of A’s view — the only value that could be
given to A that depends on ¢; is H(W;), but the distribution on H (W) is the same whether ¢; = 0
or ¢; = 1. Therefore, the probability that this query causes B to abort is at most 1/(¢r + 1).
Since A makes at most g trapdoor queries the probability that B does not abort as a result of all
trapdoor queries is at least (1 —1/(¢r +1))97 > 1/e. O

Claim 2: The probability that algorithm B does not abort during the challenge phase is at least
1/qr. Hence, Pr[&] > 1/qy.

Proof. Algorithm B will abort during the challenge phase if A is able to produce Wy, W; with the
following property: ¢y = ¢; = 1 where for i = 0, 1 the tuple (W;, h;, a;, ¢;) is the tuple on the H;-list
corresponding to W;. Since A has not queried for the trapdoor for Wy, W7 we have that both ¢g, ¢;
are independent of A’s current view. Therefore, since Pr[c; = 0] = 1/(gr+1) fori = 0,1, and the two
values are independent of one another, we have that Prjco =c; = 1] = (1-1/(¢r+1))?2 <1—-1/gz.
Hence, the probability that B does not abort is at least 1/qy. O

Observe that since A can never issue a trapdoor query for the challenge keywords Wy, Wy the
two events £ and & are independent. Therefore, Pr[&1 A &) > 1/(eqr).

To complete the proof of Theorem 3.1 it remains to show that B outputs the solution to the
given BDH instance with probability at least €/q,. To do we show that during the simulation A
issues a query for Ha(e(H;(W;),u])) with probability at least e.

Claim 3: Suppose that in a real attack game A is given the public key [g,u1] and A asks to be
challenged on words Wy and Wj. In response, A is given a challenge C' = [¢", J]. Then, in the
real attack game A issues an Hy query for either Ha(e(Hi(Wy),u])) or Ha(e(H1(W1),u])) with
probability at least 2e.

Proof. Let £3 be the event that in the real attack A does not issue a query for either one of
Hy(e(H1(Wp),ul)) and Ha(e(Hi(W7),u])). Then, when & occurs we know that the bit b € {0,1}
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indicating whether C' is a PEKS of Wy or W is independent of A’s view. Therefore, A’s output b’
will satisfy b = b’ with probability at most % By definition of A, we know that in the real attack
|Pr[b = b'] — 1/2| > e. We show that these two facts imply that Pr[=€3] > 2e. To do so, we first
derive simple upper and lower bounds on Pr[b = V']

Prlb=V] = Pr[b=1V|E)Pr[€s] + Pr[b = V' |~E3] Pr[—E&5)
1
< Pr[b = b,|53] Pr[é'g] + PI’[—|53] = B Pr[Eg} + Pl‘[ﬁgg]
1 1
= 5 + 5 Pr[_'gg],
, , 1 1 1
Pl“[b = b] > Pr[b =b ’53] Pr[€3] = 5 Pl"[gg] = 5 - 5 Pr[—|53].
It follows that € < |Pr[b = '] — 1/2| < 3 Pr[~&;]. Therefore, in the real attack, Pr[=&s] > 2¢ as
required. O

Now, assuming B does not abort, we know that B simulates a real attack game perfectly up to
the moment when A issues a query for either Ha(e(H1(Wp),u])) or Ha(e(H1(W1),u])). Therefore,
by Claim 3, by the end of the simulation A will have issued a query for either Ha(e(H1(Wp),u])) or
Hy(e(Hy(W1),u])) with probability at least 2e. It follows that A issues a query for Ha(e(Hy(Wp),u]))
with probability at least e. Consequently, the value e(Hq(W3),u]) = e(g?+%, g)®7 will appear on
the left hand side of some pair in the Hs-list. Algorithm B will choose the correct pair with proba-
bility at least 1/qy, and therefore, assuming B does not abort during the simulation, it will produce
the correct answer with probability at least €/qy,. Since B does not abort with probability at least
1/(eqr) we see that B’s success probability overall is at least €/(eqrqsu,) as required. O

3.2 A limited construction using any trapdoor permutation

Our second PEKS construction is based on general trapdoor permutations, assuming that the total
number of keywords that the user wishes to search for is bounded by some polynomial function
in the security parameter. (As a first step in our construction, we will make an even stronger
assumption that the total number of words ¥ C {0,1}* in the dictionary is also bounded by a
polynomial function, we will later show how to remove this additional assumption.) We will also
need a family of semantically-secure encryptions where given a ciphertext it is computationally hard
to say which public-key this ciphertext is associated with. This notion was formalized by Bellare
et al. [1]. We say that a public-key system that has this property is source-indistinguishable.
More precisely, source-indistinguishability for an encryption scheme (G, E, D) is defined using the
following game between a challenger and an attacker A (here G is the key generation algorithm,
and E/D are encryption/decryption algorithms). The security parameter s is given to both players.
Source Indistinguishability security game:
1. The challenger runs algorithm G(s) two times to generate two public/private key pairs
(PKy, Privg) and (PKy, Privy).
2. The challenger picks a random M € {0,1}* and a random b € {0,1} and computes an
encryption C' = PKy(M). The challenger gives (M, C) to the attacker.
3. The attacker outputs ' and wins the game if b = b'.

In other words, the attacker wins if he correctly guesses whether he was given the encryption
of M under PKj or under PK;. We define A’s advantage in winning the game as:
1

AdvSI4(s) = |Pr[b=1V] — 5\
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Definition 3.2. We say that a public-key encryption scheme is source indistinguishable if for any
polynomial time attacker .4 we have that AdvSI 4(s) is a negligible function.

We note that Bellare et al. [1] define a stronger notion of source indistinguishability than the
one above by allowing the adversary to choose the challenge message M. For our purposes, giving
the adversary an encryption of a random message is sufficient.

Source indistinguishability can be attained from any trapdoor permutation family, where for a
given security parameter all permutations in the family are defined over the same domain. Such a
family can be constructed from any family of trapdoor permutations as described in [1]. Then to
encrypt a bit b we pick a random z, and output [f(x), GL(z) @ b] where GL is the Goldreich-Levin
hard-core bit [19]. We therefore obtain the following lemma:

Lemma 3.3. Given any trapdoor permutation family we can construct a semantically secure source
indistinguishable encryption scheme.

More constructions are given in [1]. We note that source indistinguishability is an orthogonal
property to semantic security. One can build a semantically secure system that is not source
indistinguishable (by embedding the public key in every ciphertext). Conversely, one can build
a source indistinguishable system that is not semantically secure (by embedding the plaintext in
every ciphertext).

A simple PEKS from trapdoor permutations. When the keyword family ¥ is of polynomial
size (in the security parameter) it is easy to construct searchable encryption from any source-
indistinguishable public-key system (G, E, D). We let s be the security parameter for the scheme.

e KeyGen: For each W € ¥ run G(s) to generate a new public/private key pair PKy, /Privy,
for the source-indistinguishable encryption scheme. The PEKS public key is
A,y ={PKyw | W € ¥}. The private key is A,,,, = {Privy, | W € X},

e PEKS(A,.,, W): Pick a random M € {0, 1}* and output PEKS(A,..,, W) = (M, E[PK,, M]),
i.e. encrypt M using the public key PK .

e Trapdoor(A,,.,, W): The trapdoor for word W is simply Ty = Privy,.

o Test(A,., S, Tw): Test if the decryption D[Ty, S] = 0°. Output ‘yes’ if so and ‘no’ otherwise.

Note that the dictionary must be of polynomial size (in s) so that the public and private keys are
of polynomial size (in s).

This construction gives a semantically secure PEKS as stated in the following simple theorem.
Semantically secure PEKS is defined as in Definition 2.2 except that the adversary is not allowed
to make chosen keyword queries.

Theorem 3.4. The PEKS scheme above is semantically secure assuming the underlying public key
encryption scheme (G, E, D) is source-indistinguishable.

Proof sketch: Let ¥ = {Wy,..., Wy} be the keyword dictionary. Suppose we have a PEKS
attacker A for which Adv.4(s) > e(s). We build an attacker B that breaks the source indistin-
guishability of (G, E, D) where AdvSIz(s) > €(s)/k?.

The reduction is immediate: B is given two public keys PKy, PK; and a pair (M, C) where
M is random in {0,1}* and C = PK,(M) for b € {0,1}. Algorithm B generates k — 2 additional
public/private keys using G(s). It creates A,,, as a list of all k& public keys with PKy, PK;
embedded in a random location in the list. Let W;, W; be the words associated with the public
keys PKy, PK;. B sends A,,, to A who then responds with two words Wy, W, € ¥ on which A
wishes to be challenged. If {i,5} # {k,¢} algorithm B reports failure and aborts. Otherwise, B
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sends the challenge (M, C) to A who then responds with a &' € {0,1}. Algorithm B outputs b’ as
its response to the source indistinguishability challenge. We have that b = b’ if algorithm B did
not abort and A’s response was correct. This happens with probability at least % + ¢/k%. Hence,
AdvSIg(s) > €(s)/k? as required. O

We note that this PEKS can be viewed as derived from an IBE system with a limited number
of identities. For each identity there is a pre-specified public key. Such an IBE system is implied
in the work of Dodis et al. [13]. They propose reducing the size of the public-key using cover-free
set systems. We apply the same idea below to reduce the size of the public key in the PEKS above.

Reducing the public key size. The drawback of the above scheme is that the public key length
grows linearly with the total dictionary size. If we have an upper-bound on the total number of
keyword trapdoors that the user will release to the email gateway (though we do not need to know
these keywords a-priori) we can do much better using cover-free families [15] and can allow keyword
dictionary to be of exponential size. Since typically a user will only allow a third party (such as
e-mail server) to search for a limited number of keywords so that assuming an upper bound on the
number of released trapdoors is within reason. We begin by recalling the definition of cover-free
families.

Definition 3.5. Cover-free families. Let d,t, k be positive integers, let G be a ground set of size
d, and let F' = {S1,...,S;} be a family of subsets of G. We say that subset S; does not cover S; if
it holds that S; £ S;. We say that family F' is t-cover free over G if each subset in F' is not covered
by the union of t subsets in F'. Moreover, we say that a family of subsets is g-uniform if all subsets
in the family have size q.

We will use the following fact from [14].

Lemma 3.6. [14] There exists a deterministic algorithm that, for any fixed ¢, k, constructs a
g-uniform t-cover free family F over a ground set of size d, for ¢ = [d/4t] and d < 16t%(1 +

log(k/2)/log 3).

The PEKS. Given the previous PEKS construction as a starting point, we can significantly reduce
the size of public file A,,, by allowing user to re-use individual public keys for different keywords.
We associate to each keyword a subset of public keys chosen from a cover free family. Let k be the
size of the dictionary ¥ = {W7y,..., Wi} and let ¢ be an upper bound on the number of keyword
trapdoors released to the mail gateway by user Alice. Let d, g satisfy the bounds of Lemma 3.6.
The PEKS(d, t, k, q) construction is as follows:

e KeyGen: For i = 1,...,d run algorithm G(s) to generate a new public/private key pair
PK,;/Priv; for the source-indistinguishable encryption scheme. The PEKS public key is A,., =
{PK,,...,PK;}. The private key is A,,,, = {Privy, ..., Privg}. We will be using a g-uniform
t-cover free family of subsets F' = {Sy,...,S;} of {PKy,..., PK;}. Hence, each S; is a subset
of public keys.

o PEKS(A,.,, W;): Let S; € F be the subset associated with the word W; € ¥. Let S; =
{PKW ... PK@}. Pick random messages M, ..., M, € {0,1}* and let M = M;&---@ M,.
Output the tuple:

PEKS(A, ., W;) = (M, E[PKD My, ..., E[PK@),Mq])

e Trapdoor(A,,.,, W;): Let S; € F be the subset associated with word W; € . The trapdoor
for word W; is simply the set of private keys that correspond to the public keys in the set S;.
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o Test(A,.,, R, Tw):
Let Ty = {Priv®M,... Priv@} and let R = (M, C4, ..., C,) be a PEKS. For i = 1,...,q
decrypt each C; using private key Priv(® to obtain M;. Output ‘yes’ if M = M1 & --- & My,
and output ‘no’ otherwise.

The size of the public key file A,,, is much smaller now: logarithmic in the size of the dictionary.
The downside is that Alice can only release t keywords to the email gateway. Once ¢ trapdoors
are released privacy is no longer guaranteed. Also, notice that the size of the PEKS is larger now
(logarithmic in the dictionary size and linear in ¢). The following corollary of Theorem 3.4 shows
that the resulting PEKS is secure.

Corollary 3.7. Let d,t,k,q satisfy the bounds of Lemma 3.6. The PEKS(d,t,k,q) scheme above is
semantically secure under a chosen keyword attack assuming the underlying public key encryption
scheme (G, E, D) is source-indistinguishable and semantically secure, and that the adversary makes
no more than t trapdoors queries.

Proof sketch: Let ¥ = {Wy,..., Wy} be the keyword dictionary. Suppose we have a PEKS
attacker A for which Adv.4(s) > €(s). We build an attacker B that breaks the source indistin-
guishability of (G, E, D).

Algorithm B is given two public keys PK(, PK; and a pair (M, C) where M is random in {0, 1}*
and C = PKy(M) for b € {0,1}. Its goal is to output a guess for b which it does by interacting
with A. Algorithm B generates d — 2 additional public/private keys using G(s). It creates A4,,, as
a list of all d public keys with PKy, PK; embedded in a random location in the list. Let W;, W;
be the words associated with the public keys PKg, PK;.

B sends A,,, to A. Algorithm A issues up to t trapdoor queries. B responds to a trapdoor
query for W € X as follows: let S € F be the subset corresponding to the word W. If PKy € S
or PK; € S algorithm B reports failure and aborts. Otherwise, B gives A the set of private keys
{Priv; |1 € S}.

At some point, Algorithm A outputs two words W, W] € ¥ on which it wishes to be challenged.
Let Sj),S] € F be the subsets corresponding to W{, W] respectively. Let & be the event that
PKy € S, and PK; € S|. If event £ did not happen then B reports failure and aborts.

We now know that PKy € S} and PK; € S}. For j = 0,1 let 5 = {PK.",..., PK\"}. We
arrange things so that PKy = PK(SC) and PK; = PKfC) for some random 1 < ¢ < g. Next, B
picks random My, ..., Mc_1, Mey1,..., My € {0,1}® and sets M. = M. Let M' = M, & --- & M,.
Algorithm B defines the following hybrid tuple:

R = <M’, E[PKV M), ..., E[PKY™V M,_y), C,
E[PK“™ M), ..., E[PK?, Mq]>

It gives R as the challenge PEKS to algorithm A. Algorithm A eventually responds with some
b € {0,1} indicating whether R is PEKS(A,,,, W() or PEKS(A,.,, W]). Algorithm B outputs b’
as its guess for b. One can show using a standard hybrid argument that if B does not abort then
|Pr[b=10]— %| > ¢/q%. The probability that B does not abort at a result of a trapdoor query is at
least 1 — (tg/d). The probability that B does not abort as a result of the choice of words W}, W/
is at least (¢/d)?. Hence, B does not abort with probability at least 1/poly(t,q,d). Repeatedly
running B until it does not abort shows that we can get advantage €/q¢? in breaking the source
indistinguishability of (G, E, D) in expected polynomial time in the running time of A. O
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4 Construction using Jacobi symbols

Given the relation between Identity Based Encryption and PEKS it is tempting to construct a PEKS
from an IBE system due to Cocks [3]. The security of Cocks’ IBE system is based on the difficulty
of distinguishing quadratic residues from non-residues modulo N = pg where p = ¢ = 3(mod4).

Unfortunately, Galbraith [11] shows that the Cocks system as described in [3] is not public-key
private in the sense of Bellare et al. [1]. Therefore it appears that the Cocks system cannot be
directly used to construct a PEKS. It provides a good example that constructing a PEKS is a harder
problem than constructing an IBE.

We briefly explain why the basic Cocks system is not public key private. Let N € Z be a
product of two primes. For a public key z € Zy and a bit b € {0,1} define P, to be the set

Pz,b:{r+§ | reZy and (r/N)= (-1} C Zy

where (r/N) denotes the Jacobi symbol of r over N. Fix some b € {0,1}. To show that the system
is not public key private it suffices to show an algorithm that given two distinct public keys x and y
in Zy can distinguish the uniform distribution on P, ; from the uniform distribution on P, ;. The
algorithm works as follows (it is given as input x,y € Zx and z € Zy where z is either sampled
from P, or from P, y):

1. Compute t = 2% —4x € Zy.

2. If the Jacobi symbol (¢/N) = 1 output “z € P,;”. Otherwise output “z € P, ;.

When z is sampled from P, then t = 22 — 4z = (r — (z/r))? and hence ¢ will always have Jacobi
symbol 1 over N. When z is sampled from P, ; then we expect ¢ to have Jacobi symbol 1 over N
with probability about 1/2. Therefore, the algorithm has advantage 1/2 in correctly identifying
where z is sampled from. Since a Cocks ciphertext contains many such samples, the algorithm
above determines whether a ciphertext is encrypted under the public key x or the public key y with
overwhelming probability. Note there is no need to know the plaintext b.

5 Conclusions

We defined the concept of a public key encryption with keyword search (PEKS) and gave two
constructions. Constructing a PEKS is related to Identity Based Encryption (IBE), though PEKS
seems to be harder to construct. We showed that PEKS implies Identity Based Encryption, but
the converse is currently an open problem. Our constructions for PEKS are based on recent IBE
constructions. We are able to prove security by exploiting extra properties of these schemes.
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Abstract. We present a new class of signature schemes based on proper-
ties of certain bilinear algebraic maps. These signatures are secure against
existential forgery under a chosen message attack in the standard model
(without using the random oracle model). Security is based on the com-
putational Diffie-Hellman problem. The concrete schemes that we get are
the most efficient provable discrete-log type signature schemes to date.

1 Introduction

Provably secure signature schemes can be constructed from the most basic cryp-
tographic primitive, one-way functions [NY89,Rom90]. As is often the case with
cryptographic schemes designed from elementary blocks, this signature scheme
is somewhat impractical. Over the years several signature schemes were pro-
posed based on stronger complexity assumptions. The most efficient schemes
provably secure in the standard model are based on the Strong RSA assump-
tion [GHR99,CS99].

Surprisingly, no scheme based on any discrete logarithm problem comes close
to the efficiency of the RSA-based schemes. We give a partial solution to this
open problem using bilinear maps. A bilinear map is a function e: Gg x G1 — Gy
that is consistent with group operations in both of its arguments, as described in
the next section. Our construction gives an existentially unforgeable signature
whenever the Computational Diffie-Hellman (CDH) assumption holds in Gox Gy,
that is, no efficient algorithm can compute g* € G; given the three values
h,h® € Gg, and g € G;. Precise definitions are given in the next section.

Our signature scheme is based on a signature authentication tree with a
large branching factor. At a high level, our construction bares some resemblance
to the signature schemes of Dwork-Naor [DN94] and Cramer-Damgard [CD96].
Both these schemes are based on the hardness of factoring whereas our scheme
is based on CDH.

We obtain a concrete signature scheme by instantiating the bilinear map
with the modified Weil or Tate pairings. This is the only known provably se-
cure signature scheme based on the CDH assumption that is more efficient than
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the most general constructions of [CD95]. It is interesting to note that recently,
Lysyanskaya [Lys02] constructed a verifiable unpredictable function (VUF) se-
cure under the Generalized Diffie-Hellman assumption in the standard model.
Such functions (defined in [MRV99]) provide a special type of secure signatures
called unique signatures. This construction gives an excellent VUF, but as a sig-
nature scheme it compares poorly with the construction of [CD95]. We review
other known signature schemes in Section 4.

Bilinear maps such as the Weil or Tate pairing have recently been used
to construct a number of new cryptosystems, including three-party key ex-
change [Jou00], identity based encryption [BF01], short signatures [BLS01], cre-
dential systems [Ver01], hierarchical identity based encryption [HL02,GS02], and
others. In this paper we show how bilinear maps can be used to construct efficient
signature schemes secure in the standard model.

Efficient discrete log based signature schemes are known to exist in the ran-
dom oracle model [PS96,BLS01]. Security in the random oracle model does not
imply security in the real world. In this paper we only study signature schemes
secure in the standard complexity model.

2 Mappings with Algebraic Properties

We consider binary maps between groups that are consistent with the group
structure of their arguments. Such binary maps are called bilinear. Their formal
definition follow.

Definition 1 (Bilinear map). A function e: Gy x G; — Gz is bilinear if for
any four elements g1, gs € Gg, Hy, Hy € Gy the following holds:

e(gi0g2, H1) = e(g1, Hi)oe(g2, H1) and e(g1, HioHs) = e(g1, Hy)oe(gr, Ha).

In this paper we intentionally limit our scope to finite cyclic groups, which allows
us to give more efficient constructions.

Throughout the paper we use the following notation. Small Roman letters
f,9,h, ... from the lower part of the alphabet denote elements of the group Go;
capital Roman letters F, G, H, ... stand for elements of Gi; elements of Go are
denoted by letters from the end of the alphabet z,y, z.

Our constructions are based on the Computational Diffie Problem (CDH)
defined below. However to simplify the exposition we define the notion of a secure
bilinear map. We then show that this notion is equivalent to CDH. Informally,
we say that a bilinear map e: Gy x G; — G is secure if, given g € Gy and
G, H € Gy, it is hard to find h € Gg such that e(h, H) = e(g, G). More precisely,
we define secure bilinear maps as follows.

Definition 2 (Secure bilinear map). A bilinear map e: Go x Gy — Go is
(t,€)-secure if for all t-time adversaries A

AdvBLM , = Pr [e(A(g,G,H), H) =e(g,G) ’ g &Gy HEG| <.
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The probability is taken over the coin tosses of the algorithm A and random
choice of g,G, H.

We given two simple examples of bilinear maps that are believed to be secure.

= e(,+): Go x Gy — Fy, is the Weil or Tate pairings on an elliptic curve E/F,
and Gy, G are distinct subgroups of F|g] for some prime ¢ (recall that E[q] is
the subgroup containing all point of order dividing ¢ on some elliptic curve
E/F,). For certain curves E/F, one can slightly modify the Weil pairing
(as in [BF01]) so that we may take Gy = G. At any rate, the security of
the bilinear map e(:,-) is equivalent to the Computational Diffie-Hellman
assumption (CDH) in G x G;. Informally, the CDH assumption in Gy x G
means that:

It is infeasible to find G* given random group elements h, h® € Gy, and
G € G1. When Gy = Gy this is the standard CDH assumption in Gg.

— Another bilinear map believed to be secure is r(-,-): Z% X Z:(N) — Ly

defined as r(g, H) = g, where N is a product of two primes. This map is
secure under the Strong RSA assumption [BP97]. Briefly, the Strong RSA
assumption says that the following problem is difficult to solve:
For a random x € Z}; find » > 1 and y € Z}; such that y" = z.

We give a short argument why the security of the map r(-,-) is reducible
to the Strong RSA assumption. Suppose the map r(-,-) is insecure. Then,
given (G, H, g) it is feasible to find an h € G¢ such that r(g,G) = r(h, H),
i.e. ¢¢ = h*. This solution yields (through application of the Extended
Euclidean algorithm) a z € Z% satisfying z* = g, where a = H/ ged(G, H).
For random G, H bl Z;( N) the probability that a = 1 is negligible. Therefore
breaking the security of the bilinear map r amounts to breaking the Strong
RSA assumption. It is not known whether the converse is true.

Next, we show that for finite order groups a bilinear map e: Gy x G; — Gg is
secure if and only if the CDH assumption holds in Gy x G;. We first precisely
define the CDH assumption.

Definition 3 (Computational Diffie-Hellman problem). The Computa-
tional Diffie-Hellman problem is (¢,¢)-hard if for all t-time adversaries A we
have

AdvCDH , = Pr |A(g, H, H") = ¢* | gﬁGO;HﬁGl;aﬁzmlq <e

Claim. Suppose that Gg, G, Gs are cyclic groups of prime order p. Suppose the
map e: Gg X G; — G5 is non-degenerate in the following sense: e(h, H) # 1 for
some h € Gg and H € Gy. Then the map e is (¢, e)-secure if and only if the CDH
problem is (t,)-hard.

Proof. First, suppose CDH can be solved in time ¢ with probability at least e.
We give an algorithm to show that the map is not (¢, ¢)-secure. Let g € Gy
and G,H € G; where both G,H # 1. We wish to find h € Gy such that
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e(g,G) = e(h, H). Since G4 is cyclic of prime order p there exists an a € Z,, such
that G = H*. Let h = g*. Then h satisfies

e(h, H) =e(g9*, H) = e(g,H") = e(g, G).

Therefore, h = g%, which is the solution to the CDH problem (g, H,G), is the
required h. Hence, if the map is (¢, €)-secure then CDH is (¢, ¢)-hard.

Conversely, suppose there is a t-time algorithm that given random (g, G, H)
outputs h € Gg such that e(g, G) = e(h, H) with probability at least . We show
how to solve CDH. Let (g, H,G) be a random instance of the CDH problem,
where H # 1. Write G = H*® for some a € Z,. Let h be such that e(g,G) =
e(h,H). Then

e(h,H) =e(g,G) = e(g,H*) = e(g", H)

and hence e(h/g®, H) = 1. Since H # 1 it follows that h = g%, since otherwise
the map e would be degenerate. Hence, if CDH is (¢,¢)-hard then the map is
(t,€)-secure. O

3 Security for signature schemes

We recall the standard definition of secure signature schemes stated in terms of
exact security, in the spirit of [BR94]. This notion of existential unforgeability
under adaptive chosen-message attack is due to [GMRS8].

A signature scheme is a triple of probabilistic algorithms: a key generation
algorithm KeyGen, signer Sign(SK, Msg), and verifier Verify(Msg, Sig, PK). By
convention, Verify outputs 1 if it accepts the signature and 0 otherwise. We use
the oracle notation, where AZ()(.) means A supplied with oracle access to B.

Definition 4. A signature scheme is (t,e,n)-existentially unforgeable under
adaptive chosen-message attack, if for all pairs of algorithms Fy,Fa running
wm time at most t
AdvSig r, 7, = Pr[Verify(F2(T), PK) = 1|
(SK, PK) — KeyGen(1¥); T — Fo&"(SK) (1ky] < ¢
F1 requests no more than n signatures from Sign and the message output by Fo
1s different from the messages signed by Sign. The probability is taken over the

coin tosses of KeyGen, Sign, Fy and Fo. Here Fo(T) outputs a message/signature
pair.

4 Previous work

The seminal paper [GMR84] formulated a strong notion of security for signature
schemes: existential unforgeability under adaptive chosen-message attacks. Since
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then there have been many proposals for signature schemes meeting this notion
of security based on different assumptions and of varying efficiency. Some of
these results are summarized in Table 1. With an exception of GMR, all schemes
have running time of the signing and verification algorithms proportional to the
signature length. This information is omitted from the table.

Reference Signature|Public key|Max number|Security assumption
length length |of signatures

[GMR&4] O(k?) O(k) 2° claw-free trapdoor permutations

[NY89) O(k0) O(k) 2° UOWHF

[CDY5] O(kf) O(k) 2¢ one-way homomorphism

[DN94] O(k0) O(kn) n' RSA assumption

[CDY6] O(kL) O(k+n) nt RSA assumption

[GHR99],[CS99]| O(k) O(k) 00 Strong RSA assumption

[Lys02] O(km) O(km) 2m Generalized Diffie-Hellman

this paper O(k0) O(kn) n’ Computational Diffie-Hellman

(secure bilinear maps)

Table 1. Summary of provably secure signature schemes. k is the security parameter,
¢ is the depth of the authentication three, n is the branching factor of the tree, and
m is the message length. The O-notation refers to asymptotics as a function of the
security parameter k.

A signature scheme may be based on the most general cryptographic assump-
tion, namely that one-way functions exist [NY89,Rom90]. The proof proceeds
via constructing an authentication tree and results in a scheme in which the
signature length is proportional to the binary logarithm of the total number of
messages signed with the same public key. More efficient (in terms of the signa-
ture length) signature schemes can be based on the Strong RSA assumption or
its variants [CS99,GHR99]. Important steps in constructing these schemes were
the Dwork-Naor scheme [DN94] later improved by [CD96]. Both schemes use
trees with a large branching factor, which are therefore very shallow.

The Dwork-Naor trick is crucial for understanding this paper. In a nutshell,
the trick allows to increase the tree’s branching factor without blowing up the
signature size. An authentication-tree scheme produces signatures that represent
paths connecting messages and the root of the tree. Messages are usually placed
in the very bottom level of the tree, though [CD95] puts messages in the leaves
hanging from the inner nodes. The authentication mechanism works inductively:
the root authenticates its children, they authenticate their children, and so on,
down to the message authenticated by its parent. If the authentication mecha-
nism allows attaching children to a node only when some secret information is
known, then the adversary cannot forge signatures without knowing that secret.

[GMR84] and [CD95] take similar approaches in designing the authentica-
tion mechanism (hence the identical asymptotic of their signature length). They
concatenate bit representations of a node’s children and compute a value that
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authenticates this string in respect to the node. To verify a node’s authenticity
we must know all siblings of the node. If the tree is binary, the signature contains
twice as many nodes as the the depth of the tree. Indeed, each node must be
accompanied by its sibling.

Since the signature length is proportional to the depth of the tree, one may
wonder whether increasing the tree’s branching factor is a good idea. The fol-
lowing simple computation shows why this is counterproductive.

Suppose one wants to sign N messages. If the authentication tree is binary,
its depth must be at least logy N. The signature length is roughly 2klogy IV,
where k is the security parameter that accounts for the nodes’ size. When the
branching factor of the tree is increased from 2 to d, the depth of the tree goes
down to log,; N. The signatures, however, must include all siblings of the nodes
on the authentication path (ancestors of the message-leaf). Thus the signature
size becomes dklog,; N, which is actually more than in the binary case.

The improvement achieved by [DN94] is due to the way the sibling nodes
are authenticated. Using a stronger complexity assumption than in the GMR
scheme, authenticity of a node can be verified given its parent and its authenti-
cation value, whose size is independent of the branching factor. Each node has
the authentication value different from those of its siblings and their authenticity
can be verified independently. It allows to increase the number of a node’s chil-
dren and decrease the depth of the tree without inflating the signature length.
The public key size, being the branching factor times the security parameter
and, because of that, the main drawback of [DN94], was reduced in the Cramer-
Damgard scheme [CD96]. Finally, two independent methods proposed in [CS99]
and [GHR99] make the tree flat by letting the signer (but not the adversary)
add branches on the fly.

We do not distinguish between statefull and stateless schemes. All schemes
can be made memoryless at the price of doubling the tree depth [Gol86]. To
do so [Gol86] suggested using a pseudo-random function (PRF) to generate all
secret values in internal nodes of the authentication tree. The key for the PRF is
kept secret at the signer. Furthermore, instead of sequentially stepping through
the leaves of the tree (one leaf per signature) we pick a random leaf for every
signature. To make sure the same leaf is not chosen at random for two different
signatures we need to square the number of leaves and hence double the depth
of the tree.

In this paper we implement the Dwork-Naor method using a secure bilinear
map. Improving the scheme further in the direction of [CD96,CS99,GHRI9] is
left as an open problem.

5 The new signature scheme

We present a signature scheme based on a secure bilinear map. An instantiation
of this construction yields the most efficient provably secure scheme based on
the Computational Diffie-Hellman assumption known to date.

The signature scheme is designed as follows.
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— Setup of the scheme. Groups Gy and G; have prime order p. Bilinear
map e: Gy X G; — Gy is secure. Hy: M — {0,1}*® is a family of collision-
resistant hash functions, where M is the message space (the key for Hy
is fixed at random during key generation and made public). The signature
scheme allows signing of ¢™ messages, where ¢ and n are arbitrary positive
integers.
— Key generation. The public and private keys are created as follows:
Step 1. Pick aq,...,ap ki3 Z, and H E G1. Choose a random key k for the
collision resistant hash function Hj. Compute H; — HY* .. H, «
HYon € Gy.

Step 2. Pick ¢ & Go. Compute y «— e(g, H).

Step 3. Pick Gy & Z,. Compute zg « e(g, H).

Step 4. The public key is k, H, Hy, ..., H,,y and xo. The private key is
Qaq, ..., Qn, By, and g.

— Signing algorithm. Each node in the tree is authenticated with respect
to its parent; messages to be signed are authenticated with respect to the
leaves, which are selected in sequential order and never reused. To sign the i*®

message M € M the signer generates the ‘" leaf of the authentication tree

together with a path from the leaf to the root. We denote the leaf by xz, € G,

and denote the path from the leaf to the root by (z¢,%¢, ze—1,%0—1,...,11, o),

where x; is the i child of ;_y (herei; € {1,...,n}). The leaf and the nodes

along the path and their authentication values are computed as follows:

Step 1. All nodes of the tree, including the leaf x,, that have not been

visited before are computed as x; < e(g, H)" for some random 3; il L.
The secret 3; is stored for as long as node x; is an ancestor of the current
signing leaf (5, is discarded immediately after use). Note that when using
stateless signatures [Gol86] the (; are derived using a PRF and hence
there is no need to remember their values.

Step 2. The authentication value of x;, the i;h child of z;_1, is f; «
g% (Bi—1+He(z;))

Step 3. The authentication value of Hy, (M), the child of zy, is f « gP¢+Hx(M),

Step 4. The signature on M is (f, fe,i¢,..., f1,%1).

— Verification algorithm. To verify a signature (f, fg7 i, .., fl, il) on a mes-
sage M we reconstruct the nodes &y, ..., 2o in a bottom-up order (from leaf
2y to root &p). The signature is accepted if and only if Zy matches the root
of the tree. More precisely, to verify the signature the verifier performs the
following steps:

Step 1. Compute &y « e(f, H) -y~ (M)
Step 2. For j =¢...1 compute Z;_; < e(fj,Hij) -y~ (),
Step 3. The signature is accepted if £g = xg.

A signature output by the signing algorithm passes the verification test.
Indeed, step 1 of the verification algorithm results in

e(f, H) y T:OD = e(gPhetMeOD) ). e(g, H) M) = ¢(g% H) = 2.
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e HE (M)

Fig. 1. Authentication tree. The signature on M is (f, fe, ¢, ..., f1,11).

For any j € 1.../ the result of computation in step 2 of the verification algorithm
is

ey i) - 5000 = e(g™s 5 M), ) g, 1))
e(gﬁjfl—‘er(xj)’H) . e(g_Hk(xj)7H) = e(gﬁj*l,H) = .’L‘j71.

Signature length. Suppose the user needs to generate a billion signatures. Then
taking n = 20 and ¢ = 4 is sufficient (420 > 10'2). The public key will contain 20
elements in G; and two elements in Gy. The signature contains five elements in
Gg. To get stateless signatures we would need to double the depth so that each
signature will contain nine elements of Gyg.

Security. We show that the signature scheme is secure against the most general
attack. To formalize it as a claim we need to recall the definition of collision-
resistance and assume the existence of a collision-finding algorithm for e.
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Definition 5 (Collision-resistant function). We call function H: K x M —
{0,1}* a family of (t,e)-collision-resistant functions, if for any t-time algorithm
A its advantage in finding a collision

AdVCR ; = Pr[Hy(My) = Hy (M), My # My | k & Ky (M, My) — A(k)] < e.
The probability is taken over A’s coin tosses.

Definition 6 (Collision-finding algorithm). We say that an algorithm is
collision-finding for bilinear map e: Gy x G — Gy if it outputs a solution g',g" €
Gy, where ¢',g" # 1, to the equation

6(9/7 G/) — e(g//7 G//)’
for given G',G" € Gy whenever such a solution exists.

For the bilinear maps defined on elliptic curves, namely the Weil and Tate
pairings, it is easy to build collision finding algorithms. This yields a concrete
discrete-log signature scheme as described later in this section.

Theorem 1. The signature scheme is (t,e/(n + 1),m)-secure against existen-
tial forgery against adaptive chosen-message attack under the following assump-
tions:

— e is a (t,e)-secure bilinear map;

- H is (t,&)-collision-resistant function;

— there is an efficient collision-finding algorithm for e.

Proof. The proof is by contradiction. We show that existence of an efficient
forger implies that we can either find a collision in H or solve

e(g*,G1) = e(g2,G3)

for g* given G1,G3 € Gy and gy € Gg.

To this end we set up the public key to help the simulator in answering the
adversary’s signing queries. In the same time a forgery would let us respond
to the challenge or find a collision of the hash function with a non-negligible
probability.

First, we set y < e(ga, G3). Second, we pick random i € {0, ...,n}. Consider
two cases.

Case 1: i = 0. We assign H «— Gy, pick v; ¥id Zy for all j € 1...n and assign

Hj — Gé/ 7. All internal nodes of the authentication tree, including the root
but excluding the leaves, are computed as random powers of e(g2, G3). Suppose
2" is the 5 child of 2", where 2" = e(g2, G3)”. The authentication value for 2’

is computed as f’ « gy’ (+HED) 1y correctly authenticates x’ as the ;% child

of ”, since

—H(z § H(z' 1/7v; —H(z'
e(f', Hy) -y @) = (g O GaY gy, Gy) ) = e(gy, Ga)Y = 2.
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When the adversary requests a signature on a message M, the path (i,
Xp—1, bg—1, - -, 11,%0) is generated and the authentication values for all internal
nodes along the path are included in the signature. The leaf x, is computed as
xy — e(ge,GY - G;H(M)) for a randomly chosen £ Z,. The authentication
value for H(M) is set to be f « gJ. The leaf z, is authenticated as the i{® child
of g1 as above. This results in a valid signature (f, fe, e, -, f1,%1)-

Case 2: i € {1,...,n}. Assign H; «— G;. We randomly choose 7,71, ...,
Vi1 Yitly--«sn ¥id Z,, assign H G;}M and H; « Gé/’“, for all j # i. We
apply the collision-finding algorithm that returns d; and d, satisfying

e(dl, Gl) = e(dg, Gg)

The authentication tree is constructed from the bottom up. Suppose we
are given a set of siblings zi,...,2,. The challenge is to define their parent
node z such that we may find authentication values for all of them. Let z «
e(dz, G3)y~ (=) for a randomly chosen § & Zg. For all j € 1...n, such that j #
i, the authentication value of z; can be computed as f; « (g;((zj)_H(zi) ~d9)s,
Indeed, for all such j

e(fj,Hj) .ny(zj) _ 6((931(,21)—71(%) . dg)“’j7G§/7j) . 6(92,(;3)771(;;]») _
e(g;'[(zj)—H(zi) . dg,Gg) . e(gz_H(Zj)aGS) _ e(g;H(zj) . dvaS) _
e(da, G3) - €(g2, G3) ") = e(dy, Gy ) = 2.

Node z; is authenticated with f; «— d‘f. Indeed,
e(fi, Hy) -y~ ") = e(d}, Gy) -y 1) = e(d5, Ga) -y T = 2.

It follows that every internal node may be computed given its j child. In
particular, the root of the tree, xg, is determined by values on the path (z, j,
Xp—1,...,21, j), which can be efficiently computed by the randomized algorithm
given above.

When a signature is requested by the adversary, a new leaf is generated as

xp — e(ge, H%), where § 2 Z,. Then the path to the root is computed, which
would involve generating new nodes from their j* children. The authentication
value for H(M) is given by f «— gg+7H(M).

We have shown that the simulator may effectively replace the signing ora-
cle and answer the adversary’s queries. The simulated answers have the same

distribution as signatures output by the real signer.

Solving the challenge. Let us consider an algorithm that interacts with the sign-
ing oracle and then forges a signature (f, f¢, ¢, ..., f1,41) on a message M. With-
out loss of generality we may assume that the adversary makes £™ queries. Denote
the full authentication tree constructed by the simulator by 7'. The signature on
M has the form of an authenticated path up the tree from a leaf to the root xg.
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Let (x¢,t0,X¢—1,%0—1,--.,%1,%0) be the path reconstructed from the signature.
Define z; as the lowest node of the path that also appears in 7T'.

We distinguish between two types of forgeries:

Type I: j = £. Denote the message that was previously authenticated using
x¢ by M’ and let f’ be the authentication value of H(M’). It follows that

e(fv H) : y_H(M) = Ty,
e(f/7H) . y_H(M,) = 37@,

from which we have )
y T < e(f/ £ H). (1)

Type II: j < (. Let the 2, be the zgh child of z; in T and f} be its
authentication value. Similarly, there are two equations

e(fjv HZJ) ' yiH(ijrl) = Ty,
e(fjl'v Hlj) ' y_H(;E;Jrl) = Zyj,

that imply
yH(ijrl)*H(wj“) = e(fj/fjl" Hij ) (2)

Consider two possibilities. If H(M) = H(M') in type Lor H(z;11) = H(2) ;)
in type II forgery, then we find a collision in the hash function. Otherwise, we
solved equation (1) or (2) of the type

yd = €(f71:.’),

for d and f, where d # 0 and H is one of H,Hy, ..., H,.
Recall that y = e(ga,G3). Since the simulation of the adversary’s view is

perfect, the probability that H = G is n+r1 Thus e(f/? G1) = e(go, G3) and
fl/d = g*, i.e. a solution to the challenge.

Therefore an efficient algorithm for forging a signature can be used to either
find a collision in the hash function or disprove security of e. This completes the
proof of the theorem. O

6 Concrete signature scheme

To obtain a concrete secure signature scheme we instantiate the bilinear map
e: Gg x G; — Gy with a map for which there is an efficient collision finding
algorithm. Let E/F, be an elliptic curve. We denote by E(F,-) the group of
points of E over Fpr. Let ¢ be a prime divisor of |E(F,)]|.

When using a supersingular curve over F,,p > 3 we can take Gy = G; as
the subgroup containing all points of order ¢ in E(F,). The group G, is the
subgroup of order g of JFZQ. The modified Weil pairing [BF01], denoted é, is a
non-degenerate bilinear map on G X G;. Since the CDH assumption is believed
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to hold for the group Gy, we know by Claim 2 that € is secure in the sense
of Definition 2. Since the modified Weil pairing is symmetric (i.e. é(G, H) =
é(H, Q) for all H,G € Gy) a collision finding algorithm for é is immediate: given
G, H € Gy we output H,G € Gy as a collision. Indeed, é(G, H) = é(H,G) and
hence H,G is a collision for GG, H. Since é is secure and there is an efficient
collision finder we obtain the following corollary to Theorem 1:

Corollary 1. The signature scheme of Section & instantiated with the modified
Weil pairing é is existentially unforgeable under a chosen message attack if the
CDH assumption holds for the group Gog = G1 defined above.

To obtain shorter signatures one can avoid using supersingular curves and
instead use a family of curves due to Miyaji et al. [MNTO01]. Curves E/F,,p >3
in this family are not supersingular and have the property that if ¢ divides
|E(F,)| then Elq] is contained in E(Fs). Let Go be the subgroup of order ¢
in E(F,) and let G; be some other subgroup of order ¢ in E(Fps). The Weil
pairing e on Gy x G; is not degenerate. Furthermore, since CDH is believed
to be hard on Gg x G, we know by Claim 2 that e is a secure bilinear map
in the sense of Definition 2. To build a collision finder for e we use the trace
map tr: E(F,s) — E(F,). For almost all choices of G; the map tr defines an
isomorphism from G; to Gg. Then, a collision finder for e works as follows:
given (G, H) € Gy it outputs as a collision the pair (tr(G), tr(H)) € Go. Indeed,
one can verify that e(tr(G), H) = e(tr(H),G). Therefore, by Theorem 1 our
signature scheme is secure when using this family of curves.

We note that the RSA function r(z,d) = z? mod N while being bilinear
does not satisfy the condition of Theorem 1 since the orders of groups Gy and
G are not known to the simulator. Nevertheless, the signature scheme can be
instantiated with this function, which would yield a scheme similar to the Dwork-
Naor scheme.

7 Conclusion

We presented a new signature scheme secure in the standard model (i.e. without
random oracles) using groups in which the Computation Diffie-Hellman assump-
tion holds. Our scheme can be implemented using any secure bilinear map (secure
in the sense of Definition 2). Instantiating our signature scheme using the Weil
or Tate pairings gives the most efficient known discrete-log type signature secure
without random oracles.
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